• Title/Summary/Keyword: Particle-in-cell method

Search Result 250, Processing Time 0.022 seconds

Physicochemical Properties of Wheat Bran in Different Areas Prepared by a High-pressure Homogenizer Process (고압균질처리에 따른 산지별 밀기울의 이화학적 특성)

  • An, Eun-Mi;Lee, Jae-Kang;Choi, Yong-Seok;Kim, Young-Hwa;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.404-409
    • /
    • 2014
  • In this study, the effects of high-pressure homogenizer treatment on the physicochemical properties of wheat bran from different areas were evaluated. The results showed that the high-pressure homogenizer process could effectively decrease particle size and loosen the microstructure of the wheat bran matrix. As the particle size decreased, the bulk density of wheat bran was significantly decreased (p<0.05) and the water-holding capacity, swelling capacity, oil-holding capacity, and cation-exchange capacity were substantially increased. In addition, microscopic analysis revealed the gradual disintegration of the original cell wall structure and the dissociation of bran tissues over the course of high-pressure homogenization treatment. Scanning electron micrographs showed that the process could also effectively separate out the structural components of wheat bran. These results suggest that the high-pressure homogenizer process is an effective method to modify the physicochemical properties of wheat bran and likely other cereal brans, which might provide potential fiber-rich ingredients for use in functional foods.

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

Comparative Study of the Standard Plaque Assay with Solid-overlay and Immunofocus Assay for Varicella-zoster Virus Titration (수두바이러스의 정량에 있어서 Solid-overlay Standard Plaque Assay와 Immunofocus Assay의 효용성 비교 연구)

  • Lee, Hwa-Kyung;Jeong, Yong-Seok
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.1
    • /
    • pp.61-70
    • /
    • 2000
  • Standard plaque assay using agarose-overlay has long been used for titration of many infectious virus particle. Plaque assay for the titration of varicella-zoster virus and its live vaccine requires three intermittent agarose overlay to visualize plaques. Overall procedure of the assay takes at least nine days from virus inoculation and microbe contamination including fungi is frequently accompanied during incubation period. We studied whether an immunofocus assay in conjunction with peroxidase-mediated immunohistochemical reaction may replace the standard plaque assay for the virus titration by comparing the two methods. A linear relationship was observed between number of foci and virus dilution. The number of foci in a given dilution of virus appeared a little higher than counted plaques formed in standard plaque assay. Independent titration results obtained from two assay methods for a given dilution of virus demonstrated a strong correlation ($r^2=0.99$). Foci of virus infected cells as revealed by the enzyme reaction could be counted either 4 days post-infection (p.i.) under low magnification (40X) microscopy, or 6 days p.i. by naked eye observation. Larger size of cell cuture plate, virus adsorption at $35^{\circ}C$, and 10% FBS in diluent appeared to be better conditions for the assay. Immunofocus assay will be an effective and dependable titration method for varicella-zoster virus and its live vaccine in place of the standard plaque assay in respect to accuracy, costs, and experimental convenience.

  • PDF

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.

The Effect of Solvents on Sold Dispersion of Ipriflavone with Polyvinylpyrrolidone In Vivo

  • Jeong, Je-Kyo;Ahn, Yong-San;Moon, Byung-Kwan;Choi, Myung-Kyu;Khang, Gil-Son;Rhee, John-M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • ABSTRACT -Ipriflavone is a synthetic flavonoid derivate that improves osteoblast cell activity inhibiting bone resorption. In order to improve the bioavailability, solid dispersions of ipriflavone with PVP (poly-N-vinylpyrrolidone, MW=40,000 g/mole) were prepared by a spray-drying method. During the manufacturing of solid dispersion, various solvents [ethanol (EtOH), acetonitrile, methylene chloride and cosolvent-EtOH:acetone=1:1] were used to dissolve the ipriflavone and PVP. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to evaluate the physicochemical interaction between ipriflavone and PVP. Particle size, crystallinity and the area of the endotherm $({\Delta}H)$ of solid dispersed ipriflavone using the acetonitrile as solvent were much smaller than those of the other preparation types. Bioavailability of ipriflavone in vivo was changed by solvents. When considering the result of in vivo test, solid dispersion of ipriflavone using the acetonitrile as solvent showed the best choice.

A Study on Slurry Isolation Through Chemical Processing, with Comparative Analysis and Validation (화학적 처리를 적용한 Slurry 분리 및 비교분석 검증 연구)

  • Na, Wonshik
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • The use of slurry with a mix of abrasives and coolant for making Wire Saw in the photovoltaic industry has sharply increased with the semiconductor wafer. In this paper, the slurry was isolated, purified and dried by microwave drying method with high-purity silicon carbide powder obtained through chemical processing. Dried slurry bulk was first pulverized and chemical treatment was applied to produce powder. The produced slurry powder was then analyzed by going through the following analysis; thermal analysis, particle size analyses: SEM shots, elemental analysis, XRF and XRD. The results of this study found the recovery rate of the power obtained though the chemical processing to be higher than the one obtained from mineral processing. The results anticipate infrastructure building and active responses to increasingly stronger domestic and international environmental regulations through the integration and recycling of large amounts of slurry in the photovoltaic industry.

Change in Physicochemical and Storage Characteristics of Jeungpyun by Addition of Pectin and Alginate powder (펙틴, 알긴산가루를 첨가한 증편의 이화학적 특성과 저장 중 변화)

  • Park, Mie-Ja
    • Korean journal of food and cookery science
    • /
    • v.21 no.6 s.90
    • /
    • pp.782-793
    • /
    • 2005
  • This study investigated the effect of $2\%$ addition of pectin and alginate on the Physicochemical and retrogradation Properties of Jeungpyun, a Korean traditional fermented rice cake. The volume of batters with alginate and Pectin was significantly larger than that of control. Jeungpyun samples with Pectin and alginate had a larger volume with uniform and smaller cell size. All samples showed largest foaming capability after second fermentation. Foaming capability of the control ($0\%$ addition of pectin and alginate) was significantly larger than that of the treated samples. The amount of reducing sugar tended to increase during fermentation but decreased after steaming, which was due to the increase in hydrolysis of starch. On the contrary, the content of free sugar was slightly decreased during fermentation but slightly increased after steaming. The control contained the largest amount of free sugar after steaming. The microstructure of starch particles after fermentation showed completely dispersed starch granules with air bubbles. After steaming, the structure was sponge-like in all samples. Samples with added alginate and pectin had significantly higher water binding capacity than those of the control. All samples showed noticeably increased solubility and swelling power at $70^{circ}C$ with the control being significantly lower than the treated samples. Retrogradation was measured with $\alpha$-amylase and the retrogradation process of the sample with added alginate and pectin proceeded slower than that of the control. The relative crystallinity was observed through X-ray diffraction method and samples with added alginate and pectin had smaller crystallinity and delayed retrogradation compared to the control. Thus, Jeungpyun with the addition of alginate and Pectin demonstrated improved functionality and dietary fiber addition effect. The storage period of was extended as the retrogradation rate was delayed by the addition of dietary fibers.