• Title/Summary/Keyword: Particle transport

Search Result 503, Processing Time 0.026 seconds

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Bedload Sediment Transport and Morphological Change in Cross Sections of Straight Open-Channel (직선 개수로 횡단면에서의 소류사 이송과 지형 변화)

  • Pham, Chien Van;Kim, Tae-Boem;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.62-66
    • /
    • 2010
  • This study presents velocities of bedload sediment transport in both longitudinal and lateral directions and applied in considering morphological change of straight open channel. The velocities of particle motion have obtained by considering the forces balance acting on particles on the bed between the drag, tangential component of the immersed weight of the particle, and Coulomb's resistive forces. Numerical profiles of particle motion velocities reveals good agreement in comparison between this study and Kovacs and Parker (1994). The evaluated velocities components of particle transport are get used to estimate bedload transport rate in considering morphological change of straight open channel. For the application, numerical solution is applied to laboratory experiment which shows very close solution profiles between this study and observed data of a self-formed straight channel.

  • PDF

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

Characteristics of TiO2 Particle Generation and Transport in Diffusion Flame Reactor (확산 화염 반응기에서의 TiO2 입자생성 및 전달현상)

  • Choi, Sang-Keun;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.255-260
    • /
    • 2002
  • We prepared the nano-sized $TiO_2$ particles by the diffusion flame reactor and investigated the effects of several process variables on the generation and transport properties of $TiO_2$ particle. As the length from the tip of diffusion flame reactor increases, the size of $TiO_2$ particle increases by the coagulation between particles. The structure of $TiO_2$ particles prepared is almost found to be anatase. It was found that the $TiO_2$ particle size depends more largely on the change of reactor temperature than on the change of inlet $TiCl_4$ concentration.

  • PDF

Virtual Integrated Prototyping Simulation Environment for Plasma Chamber Analysis and Design

  • 김헌창;김성재;황일선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.94-97
    • /
    • 2003
  • 본 연구에서는 반도체제조에 필수적으로 사용되는 플라즈마장비의 성능을 예측.분석하여 개발 시간 및 비용의 절감과 장비의 성능을 극대화 할 수 있도록 이론적 전산모사 환경(VIP-SEPCAD)을 개발하고 있다. VIP-SEPCAD는 플라즈마의 물리.화학적 특성을 예측하는 plasma model, 중성화학종들의 반응 및 유돈 특성을 예측하는 neutral reaction-transport model, particle의 유동 특성을 예측하는 particle transport model, particle의 생성 및 성장 특성을 예측하는 particle formation-growth model, 식각 또는 증착되는 웨이퍼 표면변화를 예측하는 surface evolution model로 구성되어 있다. 현재 개발된 VIP-SEPCAD를 이용하여 산소 플라즈마의 특성과 각종 화학성분들의 분포를 예측하고 particle의 거동에 대하여 분석하였다.

  • PDF

Pressure Drop Characteristics of Air Particle Flow in Powder Transport Piping System (파우더 수송시스템의 공기입자 유동 압력강하 특성)

  • Kim, Jong-Soon;Chung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kwon, Soon-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.157-168
    • /
    • 2017
  • The pressure drop characteristics of air particle flow in a powder transport piping system were analyzed in this study. The pressure drop characteristics of air particle flow in the piping system have not well understood due to the complexibility of particle motion mechanism. Particles or powders suspended in the air flow cause the increase of the pressure drop and affect directly transport efficiency. In this study, the pressure drop in a powder transport piping system was analyzed with interactions of air flow and particle motion in straight and curved pipes. The total pressure drop increased with pipe length, mixture ratio, and friction factor of particles because of increased friction loss of air and particles in the piping system. For the coal powders of $74{\mu}msize$ and powder-to-air mass mixture ratio of 0.667, the total pressure drop under the consideration of powders and air flow was calculated as much as 30% higher than that air flow only.

Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport

  • Romano, Paul K.;Siegel, Andrew R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1165-1171
    • /
    • 2017
  • The traditional form of parallelism in Monte Carlo particle transport simulations, wherein each individual particle history is considered a unit of work, does not lend itself well to data-level parallelism. Event-based algorithms, which were originally used for simulations on vector processors, may offer a path toward better utilizing data-level parallelism in modern computer architectures. In this study, a simple model is developed for estimating the efficiency of the event-based particle transport algorithm under two sets of assumptions. Data collected from simulations of four reactor problems using OpenMC was then used in conjunction with the models to calculate the speedup due to vectorization as a function of the size of the particle bank and the vector width. When each event type is assumed to have constant execution time, the achievable speedup is directly related to the particle bank size. We observed that the bank size generally needs to be at least 20 times greater than vector size to achieve vector efficiency greater than 90%. When the execution times for events are allowed to vary, the vector speedup is also limited by differences in the execution time for events being carried out in a single event-iteration.

Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System (입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석)

  • Lee, Jae-Keun;Ku, Jae-Hyun;Kwon, Soon-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.

Characteristics of Particle Deposition onto the Cleanroom Wall Panel with Electrostatic Voltages (정전압에 따른 클린룸 벽체에서의 입자침착 특성)

  • Noh, Kwang-Chul;Son, Young-Tae;Kim, Jong-Jun;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1033-1038
    • /
    • 2006
  • We carried out the experiments on particle deposition onto the cleanroom wall panels. And then we investigated the particle deposition characteristic coefficients for electrostatic voltages and particle size. It was found that there is little difference in characteristics of the particle deposition between the steel panel and the anti-static coating panel. In case of that the particle size is under $1.0{\mu}m$, the particle deposition characteristic coefficient becomes larger as the electrostatic voltage induced to the cleanroom wall panel is increasing. Where in case of that the particle size is over $3.0{\mu}m$, the particle deposition characteristic coefficients do not show any differences with the electrostatic voltages. It is due to that the electrostatic force is the major particle transport mechanism for submicron particles, while the gravitational settling is the major particle transport mechanism for overmicron particles when the electro-static voltages are induced to the cleanroom wall panel.

Simulation of Sediment Transport in a River System Using Particle Entrainment Simulator (페즈(PES)를 이용한 하천의 토사 이동 시뮬레이션)

  • Lee, Young-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.5-14
    • /
    • 2004
  • A feasibility of using Particle Entrainment Simulator (PES) to evaluate model variables describing sediment entrainment in a river system was investigated. PES in a laboratory was utilized to simulate the sediment resuspension phenomenon in the river and the subsequent relationship between shear rate and sediment entrainment was developed. The total suspended solids (TSS) data from PES was incorporated into statistical models in an effort to describe behaviors of net particle movement in the river. PES was found to be adequate for simulating particle entrainment phenomenon in a river system. Statistical analysis was used to assess propriety of PES data for predictive purposes. The results showed good relationships between PES results and system variables, such as average stream velocity and net particle movement.