• 제목/요약/키워드: Particle simulation method

검색결과 548건 처리시간 0.021초

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

집진기내 입자 포집과 비산 문제에 대한 수치적 연구 (Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator)

  • 김주현;권순철;권기환;이상환;이주희
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

유선 분석법의 개발 및 적용 (Development and Application of Streamline Analysis Method)

  • 김태범;이치형;정재열
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.9-15
    • /
    • 2023
  • In order to properly evaluate the spatio-temporal variations of groundwater flow, the data obtained in field experiments should be corroborated into numerical simulations. Particle tracking method is a simple simulation tool often employed in groundwater simulation to predict groundwater flow paths or solute transport paths. Particle tracking simulations visually show overall the particle flow path along the entire aquifer, but no previous simulation studies has yet described the parameter values at grid nodes around the particle path. Therefore, in this study, a new technical approach was proposed that enables acquisition of parameters associated with particle transport in grid nodes distributed in the center of the particle path in groundwater. Since the particle tracking path is commonly referred to as streamline, the algorithm and codes developed in this works designated streamline analysis method. The streamline analysis method can be applied in two-dimensional and three-dimensional finite element or finite difference grid networks, and can be utilized not only in the groundwater field but also in all fields that perform numerical modeling.

Particle-based simulation of proton therapy for QA

  • Yasuoka, Kiyoshi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 1999년도 Japanese Journal of Medical Physics
    • /
    • pp.69-72
    • /
    • 1999
  • We present a method of quality assurance (QA) for dose and dose distribution anticipated in treatment planning at proton therapy using a particle-based simulation method.

  • PDF

등가 구형입자를 이용한 DEM에서의 골재 슬럼프 실험 모사 (Simulation of Aggregate Slump Test Using Equivalent Sphere Particle in DEM)

  • 윤태영;안상혁;남정희;유평준
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES: Simulation of aggregate slump test using equivalent sphere particle in DEM and its validity evaluation against lab aggregate slump test METHODS : In this research, aggregate slump tests are performed and compared with DEM simulation. To utilize spheric particles in YADE, equivalent sphere diameter concept is applied. As verification measures, the volume in slump cone filled with aggregate is used and it is compared with volume in slump cone filled with equivalent sphere particle. Slump height and diameter are also used to evaluate the suggested numerical method with equivalent concept RESULTS : Simulation test results show good agrement with lab test results in terms of loose packing volume, height and diameter of slumped particle clump. CONCLUSIONS : It is concluded that numerical simulation using DEM is applicable to evaluate the effect of aggregate morphological property in loose packing and optimum gradation determination based on the aggregate slump test simulation result.

유체 시뮬레이션의 격자 내 상세도 향상을 위한 와류 입자 혼합 기법 (Vortex Particle Turbulence for Fluid Simulation)

  • 윤종철;홍정모;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제14권4호
    • /
    • pp.1-5
    • /
    • 2008
  • 본 논문은 유체 시뮬레이션의 격자 내 상세도를 와류입자법(Vortex Particle Method)를 사용하여 향상시킬 수 있는 새로운 방법을 제안한다. 비압축 Navier-Stokes 방정식을 풀어 낸 속도장(Velocity Field)으로 유체의 거시적인 움직임을, 와류입자법으로 생성한 와도장(Vorticity Field)으로 유체의 미세한 움직임을 표현한다. 이 기법은 고해상도 격자에서 선형시스템을 풀지 않기 때문에 고해상도 유체 시뮬레이션을 효율적으로 할 수 있고, 강한 난류 효과를 만들어 낼 수 있다.

  • PDF

댐 붕괴에 의한 토양 거동 시뮬레이션 (Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation)

  • 김경성;박동우
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발 (Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow)

  • 남정우;박종천;박지인;황성철;허재경;정세민
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

도시 열환경 시뮬레이션을 위한 라그랑지안 열원 역추적 기법의 연구 (Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations)

  • 김석철;이주성;윤정임;강종화;김완수
    • 한국대기환경학회지
    • /
    • 제33권6호
    • /
    • pp.583-592
    • /
    • 2017
  • A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.