• Title/Summary/Keyword: Particle separation model

Search Result 71, Processing Time 0.027 seconds

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

Flow Visualization Study around the Distributor of Plate-fin Heat Exchangers (판형-핀 열교환기 분배면의 유동 가시화 연구)

  • Jeong, Tae-Sik;Park, Seung-Ha;Kim, Chang-Su;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • Plate-fin heat exchanger is a kind of compact heat exchangers with a good performance in heat transfer. It is widely used in various engineering fields such as aerospace, chemical and biomedical industries. Quantitative and qualitative flow visualization study were performed using the water model of commercial plate-fin heat exchanger with header angles of $30^{\circ}$. The Reynolds number was 100. Conventional digital particle image velocimetry was used to measure the instantaneous velocity fields of the header region and the flow visualization using dye injection and hydrogen bubble method were applied to capture the qualitative flow characteristics. The results showed the existence of separation flow region at the junction area and the bottom wall of the exit region.

Numerical Analysis on Removal Efficiency of Water Droplets in a Curved Vane Mist Eliminator with Consideration of Evaporation and Condensation at Surface of Droplets (액적 표면에서 증발 및 응축을 고려한 곡면 형상 액적 제거장치의 제거 효율에 대한 수치 해석)

  • Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 2016
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For accurate understanding of removal process in a curved vane mist eliminator, a numerical model including turbulent dispersion, evaporation and condensation of water vapor at surface of droplets is required. A two-stage curved vane mist eliminator has been modeled, and fluid flow of mixture of air and water vapor and droplet trajectories were solved simultaneously with taking into account two-way coupling. Removal efficiency of droplets with various inlet condition of relative humidities (RH, 40%, 90%, and 100%) were compared. As RH increased, the effect of evaporation decreased and inertial separation efficiencies of droplets obtained increased especially for droplets of diameter below 10 micrometers.

Preparation and Evaluation of Sustained Release Aspirin Microcapsules Using Eudragit $RS^{\circledR}$ Polymer (Eudragit $RS^{\circledR}$를 이용한 지속 방출형 아스피린 마이크로캅셀의 제조 및 평가)

  • Chun, In-Koo;Shin, Dong-Won
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.26-39
    • /
    • 1988
  • Eudragit $RS^{\circledR}$ polymer was used as a wall material for the microencapsulation of aspirin by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene (PIB) in cyclohexane, and microcapsules obtained were evaluated by particle size analysis, scanning electron microscopy (SEM), drug release and drug stability test. With PIB as a coacervation inducing agent, smooth and tight microcapsules with less aggregation were obtained. Below 1 : 0.3 core-wall ratio, it was possible to coat individual particle. Variation of production conditions showed that increasing the proportion of wall material, particle size and wall thickness of microcapsules and the concentration of paraffin wax in cyclohexane as a sealant sustained drug release rates effectively. SEM confirmed that larger microcapsules after drug release did not rupture into smaller particles but contained a few small pores on the surface. Aspirin release from Eudragit $RS^{\circledR}$ coated microcapsules was independent of the pH of medium, and the mechanism of drug release from non-sealed and sealed microcapsules appeared to fit Higuchi matrix model kinetics. Aspirin in the mixture of aspirin microcapsules and sodium bicarbonate was by far more stable than that in the mixture of pure aspirin and sodium bicarbonate.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Experimental study on treatment of waste slurry by vacuum preloading with different conditioning agents

  • Wu, Yajun;Jiang, Haibo;Lu, Yitian;Sun, Dean
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.543-551
    • /
    • 2019
  • In China, serious environmental problems are induced by the extremely soft construction waste slurries in many urban areas, and there is no appropriate method to treat it presently. In this paper, four model tests were conducted to investigate the efficiency of waste slurry treatment by combining three conditioning agents which can change characteristics of the slurries with a traditional vacuum preloading method. The tests of size analysis of particle aggregate were conducted to investigate the influence of different conditioning agents on the size distributions of particle aggregate. During the model test, the discharged water volumes were monitored. The pore-size distribution and void ratio of the waste slurries after the vacuum preloading were measured by mercury intrusion porosimetry (MIP). It is found that 1) During the natural precipitation, volume of water out of the organic agent is higher than that of the mixed agent, but it is smaller than that of the mixed agent in the vacuum preloading stage; 2) the mixed agent has a higher total volume of water out than the organic agent and the inorganic agent after test, while the organic agent and the inorganic agent have little difference with respect to the drainage effect. The results demonstrate that the combination of mixed conditioning agent and vacuum preloading for the solid-liquid separation in waste slurry has a satisfactory effect and can be applied in engineering practice.

Finite Element Analysis of Statics and Natural Characteristic of Vibrating Screen (진동스크린의 정적 및 고유특성 유한요소해석)

  • Hong, Seok-Beom;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.886-893
    • /
    • 2013
  • A vibrating screen with multiple decks is widely employed for the process separation of many valuable export commodities. In this study, the inclination angle of the deck of the vibrating screen and the direction angle of the screen's vibration under single particle kinematics were predicted. A finite element model of the vibrating screen was established by parameterization modeling. Through modal analysis and static analysis of the model, the natural frequency, natural vibration mode, and stress distribution of the structure were determined, based on which the dynamics and design optimization of the vibrating screen could be achieved. Future plans also reflect this by conducting detailed design of vibrating screens for the manufacturing plans of vibrating screen machine.

Recalculation of the Particle Dynamic Model for Gas-Solid Cyclone (싸이클론에 대한 입자운동방정식의 재계산)

  • Lee, Kyung-Mi;Jang, Jung-Hee;Jo, Young-Min;Kim, Chang-Nyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.708-717
    • /
    • 2007
  • In the present study, one of the widely applied equations for gas-solid cyclones, Leith and Licht model, was evaluated based on the 3-D CFD technique. The initial and boundary values of radial position and tangential velocity obtain-ed from the CFD simulation enabled complete calculation of the nonlinear second differential equation. This approach showed about 30% errors between calculations with and without the second order differential term. The calculation by using the simple first order equation presented shorter times to migrate up to the inner wall of the cyclone than by the second order, which theoretically implies higher separation efficiency. Further comparison is now under evaluation in terms of the detailed grade efficiency.

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

Comparison of CME radial velocities from the flux rope model and the ice cream cone model

  • Kim, Tae-Hyeon;Moon, Yong-Jae;Na, Hyeon-Ok
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Coronal Mass Ejections (CMEs) are enormous eruptions of plasma ejected from the Sun into interplanetary space, and mainly responsible for geomagnetic storms and solar energetic particle events. It is very important to infer their direction of propagation, speed and their 3-dimensional configurations in terms of space weather forecast. Two STEREO satellites provide us with 3-dimensional stereoscopic measurements. Using the STEREO observations, we can determine the 3-dimensional structure and radial velocity of the CME. In this study, we applied three different methods to the 2008 April 26 event: (1) Ice cream Cone Model by Xue (2005) using the SOHO/LASCO data, (2) Flux rope model by Thernisien (2009) using the STEREO/SECCHI data, (3) Flux rope model with zero angle using the STEREO/SECCHI data. The last method in which separation angle of flux rope is zero, is similar to the ice cream cone model morphologically. The comparison shows that the radial speeds from three methods are estimated to be about 750km/s and are within ${\pm}120km/s$. We will extend this comparison to other CMEs observed by STEREO and SOHO/LASCO.

  • PDF