• Title/Summary/Keyword: Particle matter(PM)

Search Result 190, Processing Time 0.023 seconds

Exposure to Fine Particle along Different Commuting Routes in Urban Area of Fukuoka, Japan

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.205-213
    • /
    • 2015
  • The objective of the current study was to assess the comparative risk associated with exposure to particulate matter (PM) while commuting via different public transport modes in Fukuoka, Japan. For the given routes and measuring days, a trip-maker carried a lightweight portable bag loaded the real-time measurement devices which take simultaneous measurement for size-fractioned particle number concentration, $PM_{2.5}$ mass concentration, and total suspended particle (TSP) collection. The results of the present study have shown significant differences between public transports as commuting modes in Fukuoka. The PM exposure levels on subway platform and inside subway train were overwhelmingly higher than those of other points on commuting route. The relative ratio between modes (i.e., the ratio of $PM_{2.5}$ inside subway to that inside bus) provides an idea for choosing a right commuting mode for our health. This study clearly provided evidence of the extremely high levels of iron exposure by subway uses compared to bus uses. The result of theoretically reconstructed mass concentration of $PM_{2.0-0.3}$ collected on subway platform suggests that the PM of underground subway will be associated with PM both generated in subway system and inleakaged from outdoor environment.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Effect of Particulate Matter on Human Health, Prevention, and Imaging Using PET or SPECT

  • Zaheer, Javeria;Jeon, Jongho;Lee, Seung-Bok;Kim, Jin Su
    • Progress in Medical Physics
    • /
    • v.29 no.3
    • /
    • pp.81-91
    • /
    • 2018
  • Particulate matter (PM) in dust causes serious pathological conditions, and it has been considered a critical health issue for many years. Respiratory disorders such as bronchitis, asthma, and chronic inflammation, are the most common illnesses due to PM that appears as dust. There is evidence that cardiovascular and neurological abnormalities are caused by PM. Although an extensive amount of work has been conducted on this topic, including studies on the nature of the particles, particle size measurements, particle distribution upon inhalation, the health effects of fine particles, disease prevention, diagnosis, and treatment, to this date, there is still a considerable lack of knowledge in these areas. Therefore, the identification of the key components that cause diseases owing to PM, and the specific diagnoses of the diseases, is important. This review will explore the current literature on the origin and nature of PM and their effects on human health. In addition, it will also highlight the approaches that have been adopted in order to diagnose the effects of PM using positron emission tomography (PET) or single-photon emission computerized tomography (SPECT).

Concentrations of Particulate Matter Exposed to Farm Workers in the Broiler Houses (육계사 내 작업자의 미세먼지 노출량 현장모니터링)

  • Seo, Hyo-Jae;Oh, Byung-Wook;Kim, Hyo-Cher;Sin, So-Jung;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.

Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan

  • Ma, Chang-Jin;Matuyama, Sigeo;Sera, Koichiro;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • This study was aimed to thoroughly estimate the characteristics of indoor particulate matter (PM) collected on subway platforms by the cooperative approach of semi-bulk and single particle analyses. The size-resolved PM and its number concentration were measured on the platform in a heavily traveled subway station in Fukuoka, Japan. Particle Induced X-ray Emission (PIXE) and micro-PIXE techniques were applied to the chemical analyses of semi-bulk and single particle, respectively. There was the close resemblance of timely fluctuation between PM number concentration and train service on the third basement floor (B3F) platform compared to the second basement floor (B2F) and its maximum level was marked in rush hour. Higher number counts in large particles ($>1{\mu}m$) and lower number counts in fine particles ($<1{\mu}m$) were shown on the platform compared to an above ground. PM2.5 accounted for 58.2% and 38.2 % of TSP on B3F and on B2F, respectively. The elements that were ranked at high concentration in size-resolved semi-bulk PM were Fe, Si, Ca, S, and Na. The major elements tending to have more elevated levels on B3F than B2F were Fe (4.4 times), Ca (17.3 times), and Si (46.4 times). Although concentrations were very low, Cr ($11.9ng\;m^{-3}$ on B3F, $2.4ng\;m^{-3}$ on B2F), Mn ($3.4ng\;m^{-3}$ on B3F, $0.9ng\;m^{-3}$ on B2F), and Pb ($0.6ng\;m^{-3}$ on B3F, $1.6ng\;m^{-3}$ on B2F) were detected from PM2.5. Individual PM was nearly all enriched in Fe with Si and Ca. Classifying and source profiling of the individual particles by elemental maps and particle morphology were tried and particles were presumably divided into four groups (i.e., train/rail friction, train-rail sparking, ballast/abrasive, and cement).

ESTIMATION OF RAIN SCAVENGING RATIO FOR PARTICLE BOUND POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS

  • Kim, Hyeon-Kook;Shin, Yong-Seung;Lee, Dong-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.33-44
    • /
    • 2006
  • The objective of this study was to develop and assess a method for estimating the rain scavenging ratios (RSRs) of particle-bound PAHs and PCBs using measured scavenging ratio of particulate matters (PM) and routinely available data of physico-chemical properties of PM. Paired atmospheric and rainwater sampling was conducted for a total of 4 rain events. Assuming equilibrium partitioning in rainwater-gas-PM system, an equation was derived for estimating the RSR of particle-bound chemicals as a function of RSR of PM and three equilibrium partition constants (i.e. dimensionless Henry's law constant, gas-particle partition coefficient, and water-particle partition coefficient). For all PAHs, the model significantly under-predicted the RSR while the model prediction for PCBs agreed with observation mostly within a factor of 5. The RSR model for the chemicals is of limited use as its accuracy critically depends on how close the observed partitioning of the chemicals in the gas-PM-rainwater system is to that estimated under the equilibrium assumption.

Chemical Properties and Source Profiles of Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Kim, Shin-Do;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.165-172
    • /
    • 2015
  • Under a very tough situation that there has been increasing concern to the air quality in underground subway spaces, this study set sights on the thorough estimation of the chemical properties and source apportionment of particulate matter (PM) collected on an underground subway platform by a cooperative approach of semi-bulk and single particle analyses. The size-resolved PMs were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4, and then, they were semibulkily analyzed by a PIXE and the TOR$^{(R)}$ method, and individually analyzed by a SEM-EDX. Overwhelmingly enriched iron was a notable feature of elemental concentration of $PM_{2.5}$. Source classification of iron in $PM_{10-2.5}$ and $PM_{2.5}$ performed along with their elemental concentrations, indicates that the railway originated iron accounts for 95.71% and 66.39% of total iron in $PM_{10-2.5}$ and $PM_{2.5}$, respectively. Via a stoichiometric categorization, $Fe_2O_3$, $CaAl_2Si_2O_8$, $Al_2O_3$, and $CaCO_3$ show more than 85% abundance ratio in individual coarse particles. The result of theoretical estimation of the subway derived organic carbon ($OC_{Subway}$) suggests that $OC_{Subway}$ in $PM_1$ and $PM_{2.5-1}$ account for 75.86% and 51.88% of total organic carbon, respectively.

Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Zhang, Daizhou;Yamamoto, Mariko;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • In order to clarify the thermal and hygroscopic properties of indoor particulate matter (PM) in a semiclosed subway space, which is critically important for understanding of the distinctive particle formation processes as well as the assessment of their health effects, the size-resolved PMs (i.e., $PM_{2.5}$ and $PM_{10-2.5}$) were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4. The elemental concentrations in soluble and insoluble fractions were determined by PIXE from the bulkily pretreated $PM_{2.5}$. The thermal and hygroscopic characteristics of individual particles were investigated via a combination of the unique pretreatment techniques (i.e., the high-temperature rapid thermal process and the water dialysis) and SEM-EDX analysis. Iron and calcium were unequaled in insoluble and soluble $PM_{2.5}$ fractions, respectively, with overwhelming concentration. The SEM-EDX's elemental net-counts for the pre- and post-pyrolyzed PMs newly suggest that magnesium and several elements (i.e., silica, aluminum, and calcium) may be readily involved in the newly generated subway fine PM by a high-temperature thermal processing when trains are breaking and starting. Through the water dialysis technique, it turned out that calcium has meaningful amount of water soluble fraction. Furthermore, the concentrations of the counter-ions associated with the calcium in subway $PM_{10-2.5}$ were theoretically estimated.

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF