• Title/Summary/Keyword: Particle loading ratio

Search Result 73, Processing Time 0.023 seconds

Instrumentation of a Thermal-Optical Carbon Analyzer and Its Sensitivity in Organic and Elemental Carbon Determination to Analysis Protocols

  • Lim, Ho-Jin;Sung, Su-Hwan;Yi, Sung-Sin;Park, Jun-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A thermal-optical transmittance carbon analyzer has been developed to determine particulate organic (OC) and elemental (EC) carbon. Several analysis factors affecting the sensitivity of OC and EC determination were investigated for the carbon analyzer. Although total carbon (TC) is usually consistent in the determination, OC and EC split is sensitive to adopted analysis protocol. In this study the maximum temperature in oxygen-free He in the analysis was examined as a main cause of the uncertainty. Prior to the sensitivity analysis consistency in OC-EC determination of the carbon analyzer and the uniformity of carbonaceous aerosol loading on a sampled filter were checked to be in acceptable range. EC/TC ratios were slightly decreased with increasing the maximum temperature between $550-800^{\circ}C$. For the increase of maximum temperature from $500^{\circ}C$ to $800^{\circ}C$, the EC/TC ratio was lowered by 4.65-5.61% for TC loading of 13-44 ${\mu}g/cm^2$ with more decrease at higher loading. OC and EC determination was not influenced by trace amount of oxygen in pure He (>99.999%), which is typically used in OC and EC analysis. The facing of sample loaded surface to incident laser beam showed negligible influence in the OC-EC split, but it caused elevated PC fraction in OC for forward facing relative to backward facing.

Formation and Characteristics of Aerobic Granular Sludge Using Polymer in Sequencing Batch Reactor (연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성)

  • Lee, Bong-Seob;Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1143-1150
    • /
    • 2009
  • This study was carried out to investigate of aerobic granulation by using sequencing batch reactor(SBR). To make aerobic granular sludge in short period of time, we used polymer. In case of SBR, we have studied on physicochemical characteristics of particle size, settling velocity, surface charge, and specific oxygen utilization rate(SOUR) depending on aerobic particle's formation. The results of running SBR with $5.4kg{\cdot}COD/m^3{\cdot}d$ of COD loading rate and 20 days reaction time showed that aerobic particle size, settling velocity, SOUR, surface charge, polysaccharide/protein(PS/PN) ratio were 2.6 mm, 1.7 cm/s, $346mg{\cdot}O_2/g{\cdot}MLVSS{\cdot}hr,\;(-)0.26{\cdot}meq/g{\cdot}MLVSS$, and 2.06 mg/mg respectively.

Variation of strength of soil matrix with artificially manipulating particle distribution of granular soil (인위적 입도조정에 따른 지반의 강도특성 변화)

  • Moon, Jun-Ho;Xin, Zhen-Hua;Kim, Gab-Boo;Moon, Sun-Mi;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • In this study, an artificially formed Gap graded soil, designed to increase its shear strength, was analyzed to determine the strength parameters through direct shear tests. Uniform and fine grain size samples were compared to the Gap graded soil to investigate the increase in the shear strength. Plate loading tests were conducted using 13mm and 19mm aggregates to confirm the reproducibility of the strength enhanced samples for site application. This test confirmed that the particle size ratio and the internal friction angle are correlated to the shear strength, and the shear resistance angle significantly increased in the specific particle size ratio range. The calculation of the ultimate bearing capacity by the plate load test demonstrated that the grain size adjustment method greatly influences the strength increase rate. Therefore, the findings were verified and it was confirmed that a high shear strength is achievable despite the existence of a poor particle size distribution.

Preparation of the Dexamethasone-incorporated Lipid Nanosphere: Characteristics of Lipid Nanosphere by Varying Species and Ratio of Lipid (덱사메타손이 봉입된 지질나노입자의 제조: 지질의 종류와 함량 변화에 따른 지질나노입자의 특성)

  • Jeong, Seok-Hyeon;Lee, Jeong-Eun;Seong, Ha-Su;Sin, Byeong-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.464-470
    • /
    • 2006
  • the coricosteroid drug dexamethasone is an efficacious antiinflammatory drug, it is difficult to formulate in an injectable formulation due to its poor aqueous solubility. A lipid-based nanosphere formulation containing dexamethasone was designed for solubilization of the drug in aqueous solution and sustained release of the drug from the nanosphere. The lipid nanospheres, composed of phospholipid, cholesterol and cationic lipid, were prepared by self emulsification-solvent diffusion method followed by diafiltration. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated according to the variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter 80-120 nm and dexamethasone loading efficiency of greater than 80%. The drug loading efficiency increased with the increase of the length of aliphatic chain attached to the phospholipid. However, the drug loading efficiency was inversely proportional to the increase of cholesterol content in the lipid composition. The lipid nanosphere could not be prepared without the use of cationic lipid and the drug loading efficiency was proportional to the increase of cationic lipid content. The lipid nanospheres containing dexamethasone are a promising novel drug carrier for an injectable formulation of the poorly water-soluble drugs.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

Preparation and Evaluation of Meloxicam-loaded Poly(D,L-lactic acid) Microspheres (멜록시캄 함유 poly (D,L-lactic acid) 미소립자의 제조 및 평가)

  • Im, Jong-Seob;Oh, Dong-Hoon;Li, Dong-Xun;Sung, Jung-Hoon;Yoo, Bong-Kyu;Kim, Jung-Ae;Woo, Jong-Soo;Lee, Yong-Bok;Kim, Se-Mi;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • Meloxicam-loaded microspheres were prepared with poly(D,L-lactic acid)(PLA) by a solvent-emulsion evaporation method. The morphology, particle size, drug loading capacity, drug entrapment efficiency (EE) and release patterns of drug were investigated in vitro. Various batches of micro spheres with different size and drug content were obtained by changing the ratio of meloxicam to $PLA^{\circ}{\AE}s$ with different molecular weight, PLA concentration in the dispersed phase and stirring rate. Meloxicam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. Microspheres prepared with smaller molecular weight produced faster drug release rate. The release rate of meloxicam for long-acting injectable delivery system in vitro, which would aid in predicting in vivo release profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres. Blood concentration-time profile of meloxicam after intramuscular injection of meloxicam-loaded microspheres in rabbits showed possibility of long term application of this system in clinical settings.

A Study on Flame Propagation Through a Mixture of H2/Air and Inert Particles with Radiation Effect (복사효과를 고려한 수소/공기/불활성입자 혼합물에서의 화염전파에 대한 연구)

  • Kim, Deok Yeon;Son, Jin Wook;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1040-1047
    • /
    • 1999
  • The characteristics of flame propagation in inert particle-laden $H_2$/Air premixed gas are numerically investigated on this study. The 2nd order TVD scheme is applied to numerical analysis of governing equations and multi-step chemical reaction model and detailed transport properties are sued to solve chemical reaction terms. Radiation heat transfer is computed by applying the finite volume method to a radiative transfer equation. The burning velocities against the mole fractions of hydrogen agree well with results performed by different workers. The inert particles play significant roles in the flame propagation on account of momentum and heat transfer between gas and particles. Gas temperature, pressure and flame propagation speed are decreased as the loading ratio of particle is increased. Also the products behind flame zone contain lots of water vapor whose absorption coefficient is much larger than that of unburned gas. Thus, the radiation effect of gas and particles must be considered simultaneously for the flame propagation in a mixture of $H_2$/Air and inert particles. As a result, it is founded that because the water vapor emits much radiation and this emitted radiation is released at boundaries as radiant heat loss as well as reabsorbed by gas and particles, flame propagation speed and flame structure are altered with radiation effect.

A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators (기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성)

  • Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

Electrical and the Mechanical Properties of Graphite particle/carbon fiber hybrid Conductive Polymer Composites (흑연입자/탄소섬유 혼합 보강 전도성 고분자 복합재료의 전기적, 기계적 특성 연구)

  • Heo Seong-Il;Yun Jin-Cheol;Oh Kyung-Seok;Han Kyung-Seop
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.7-12
    • /
    • 2006
  • Graphite particle/carbon fiber hybrid conductive polymer composites were fabricated by the compression molding technique. Graphite particles were mixed with an epoxy resin to impart the electrical conductivity in the composite materials. In this study, graphite reinforced conductive polymer composites with high filler loadings were manufactured to accomplish high electrical conductivity above 100S/cm. Graphite particles were the main filler to increase the electrical conductivity of composites by direct contact between graphite particles. While high filler loadings are needed to attain good electrical conductivity, the composites becomes brittle. So carbon fiber was added to compensate weakened mechanical property. With increasing the carbon fiber loading ratio, the electrical conductivity gradually decreased because non-conducting regions were generated in the carbon fiber cluster among carbon fibers, while the flexural strength increased. In the case of carbon fiber 20wt.% of the total system, the electrical conductivity decreased 27%, whereas the flexural strength increased 12%.

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.469-479
    • /
    • 2018
  • The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.