• Title/Summary/Keyword: Particle characteristic

Search Result 517, Processing Time 0.023 seconds

Development and performance evaluation of a test particle generator for a field inspection equipment of PM-2.5 sensors (미세먼지 간이측정기 현장 검사용 시험 입자 발생기 개발 및 성능 평가)

  • Chung, Hyeok;Park, Jin-Soo
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.61-68
    • /
    • 2022
  • In this study, a fluidized bed particle generator was developed to generate an aerosol without supply of compressed air and to increase portability. It was assumed that the mixing ratio of the test particles and beads, the input amount, and the air flow rate supplied to the generator would have effect on the aerosol generation characteristics. The product of these three parameters was set as a characteristic parameter and particle generation characteristics according to the change of the characteristic parameter were observed. As a result, it was confirmed that the input amount of test particles and beads was not suitable as a characteristic parameter and a characteristic parameter expressed as a product of the mass mixing ratio and the air flowrate was newly defined. When the new characteristic parameter is applied, it can be confirmed that the total amount of particles generated from the particle generator is a function of the characteristic parameter. As a result of measuring the amount of particle generation by adjusting the characteristic parameter, it was confirmed that the performance required for the test particle generator for the field inspection equipment of PM-2.5 sensors could be satisfied.

Characteristics of Particle Deposition onto the Cleanroom Wall Panel with Electrostatic Voltages (정전압에 따른 클린룸 벽체에서의 입자침착 특성)

  • Noh, Kwang-Chul;Son, Young-Tae;Kim, Jong-Jun;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1033-1038
    • /
    • 2006
  • We carried out the experiments on particle deposition onto the cleanroom wall panels. And then we investigated the particle deposition characteristic coefficients for electrostatic voltages and particle size. It was found that there is little difference in characteristics of the particle deposition between the steel panel and the anti-static coating panel. In case of that the particle size is under $1.0{\mu}m$, the particle deposition characteristic coefficient becomes larger as the electrostatic voltage induced to the cleanroom wall panel is increasing. Where in case of that the particle size is over $3.0{\mu}m$, the particle deposition characteristic coefficients do not show any differences with the electrostatic voltages. It is due to that the electrostatic force is the major particle transport mechanism for submicron particles, while the gravitational settling is the major particle transport mechanism for overmicron particles when the electro-static voltages are induced to the cleanroom wall panel.

Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU) (Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법)

  • Lee, Yang-Woo;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.

Characteristics of Particle Deposition onto Cleanroom Wall Panel for Varying Particle Charging Rates (입자하전량에 따른 클린룸 수직벽체로의 입자침착 특성)

  • Kim, Jong-Jun;Noh, Kwang-Chul;Sung, Sang-Chul;Baek, Sun-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.725-730
    • /
    • 2008
  • In this study, we found out charged particle's deposition characteristic by experiments of $0.5{\mu}m$, $1.0{\mu}m$, $3.0{\mu}m$ size particle's concentration decay. We carried out the experiments on charged particle deposition onto the vertical cleanroom wall panel and some other fundamental experiments. The particle deposition mechanism is consist of sedimentation, convection, diffusion, thermophoresis, electrostatic and so on. Particle size determines mainly working deposition mechanism. The charged particle is made with corona discharge that are constituted field charging and diffusion charging. In addition, this combinational mechanism is called combined charging. The type of corona discharge determines quantity of particle electrical charge. In conclusion, we assumed that quantity of particle electrical charge accelerations deposition velocity onto the vertical cleanroom wall panel and proved it. And we figured out particle's deposition characteristic through compared between our experiment's results.

  • PDF

Influence of Water on Compression Characteristic of Decomposed Granite Soil Based on Single Particle Crushing Strength (단입자파쇄강도에 기초한 화강풍화토의 압축특성에 미치는 수분의 영향)

  • Ham, Tae-Gew;Kim, Uk-Gie
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.101-109
    • /
    • 2008
  • In order to investigate the influence of the water on compression characteristic of decomposed granite soils, a single particle crushing test and one-dimensional compression tests were carried out on three decomposed granite soils and Silica sand. The initial fracture strength for single particle reduced and variability of the strength increases due to weakening by existing water. Moreover, it was recognized that one-dimensional compression characteristic was related to the initial fracture strength characteristic, and the initial fracture strength also has the effect of weathering.

An Experimental Study on Particle Collection Efficiency of the Slit Impactor (슬릿 임팩터의 입자 포집 효율에 관한 연구)

  • 황창덕;허재영;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.689-696
    • /
    • 1989
  • In this experimental study, relative particle size distribution was measureed at the inlet and outlet of the slit impactor using the particle sizer. The imployed measuring method of the size distribution was different from the conventional method. This measurement system has the advantage of obtaining the particle collection efficiency for various particle size easily and at once compared with other methods. The effects of jet to plate distance and Reynolds number on the characteristic impactor efficiency curves have been studied. In the results of this experiment, the increment of collection efficiency was observed as Reynolds number increases in the case of S/W = 1/2 but was very slight. The influence of S/W is more remarkable than that of Reynolds number on the particle collection efficiency.

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF

Morphological. Analysis of Wear Particles by Fractal Dimension (차원해석에 의한 기계습동재료의 마멸분 형상특징 분석)

  • Won, D. W.;Jun, S. J.;Cho, Y. S.;Kim, D. H.;Park, H. S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.53-58
    • /
    • 2001
  • Fractal dimension is the method to measure the roughness and the irregularity of something that cannot be defined obviously by Euclidean dimension. And the analysis method of this dimension don't need perfect, accurate boundary and color like analysis lot diameter, perimeter, aspect or reflectivity of wear particles or surface. If we arranged the morphological characteristic of various wear particle by using the characteristic of fractal dimension, it might be very efficient to the diagnosis of driving condition. In order to describe morphology of various wear particle, the wear test was carried out under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are boundary fractal dimension and surface fractal dimension.

  • PDF

Effect of Particle size and Blending Ratio on Thermo Reaction and Combustion Characteristics in Co-firing with Bituminous and Sub-bituminous Coals (역청탄과 아역청탄 혼합연소조건에서 입자크기와 혼소율이 열물성반응과 연소특성에 미치는 영향)

  • Sung, Yon-Mo;An, Jae-Woo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Sung-Chul;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2010
  • In order to provide fundamental information for developing reaction model in the practical blended coal power plants, effects of particle size and blending ratio on combustion characteristics and thermal reaction in co-firing with bituminous and sub-bituminous coals were experimentally investigated using a TGA and a laboratory-scale burner. Characteristic parameters including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. Distributions of flame length and mean particle temperature were investigated from the visualization of flames in slit-burner system. As coal particle size decreased and volatile matter content increased, characteristic temperatures and activation energy decreased. The ignition/burnout characteristics and activation energy are linearly influenced by a variation in particle size and blending ratio. These results indicated that the control of the coal blending ratio can improve the combustion efficiency for sub-bituminous coals and the ignition characteristics for bituminous coals.

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.