• Title/Summary/Keyword: Particle beam

Search Result 386, Processing Time 0.026 seconds

A Study on the Characteristics of Therapy Radiation Detector with Diode (다이오드를 이용한 치료방사선 검출기의 특성에 관한 연구)

  • 이동훈;지영훈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.129-138
    • /
    • 1995
  • High-energy and high-dose X-ray and electron beam have been used in radiation therapy after developing particle accelerators. It is recommended to irradiate patients exect real dose for improving therapy effectiveness by International Committee on Radiation Units and Measurement. The radiation detector for daily beam checks of medical accelerators is described. Using thirteen silicon diodes, we have designed the diode detector providing information about calibration, beam symmetry, flatness, stability variation according to radiation damage, time and general quality assurance for both photon and eletron beams. we also compared these measurement values with those of using ionization chamber, film and semiconductor dosimeter.

  • PDF

Vibration Analysis of the Beam Structure with a Moving Mass (이동물체에 의한 보 구조물의 진동 해석)

  • 이우식;임강민
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-64
    • /
    • 1995
  • This paper introduced a simple numerical analysis algorithm for the calculation of the dynamic responses of the beam structure with a moving mass. The dynamic equation of motion of the Bernoulli-Euler beam is derived by considering the moving mass as a moving particle, and the dynamic equation of motion is transformed into an integro-differential equation by use of the structural influence function. The numerical solutions of the integro-differential equation are obtained by the modal analysis approach, and compared with those cited from well-known references. The proves that the numerical analysis algorithm proposed herein provide very reliable results, and thus it can be utilized in the design analysis of the beamlike structures exited by a mass which is traveling on it.

  • PDF

A study of solitary wave trains generated by an injection of a blob into plasmas

  • Choe, Jeong-Rim;DokGo, Gyeong-Hwan;Choe, Eun-Jin;Min, Gyeong-Uk;Lee, Eun-Sang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.93.1-93.1
    • /
    • 2012
  • In this study, we investigated the generation of consecutive electrostatic solitary waves (ESWs) using by one-dimensional electrostatic particle-in-cell (PIC) simulation. For a given Gaussian perturbation, it is found that electron two-stream instability occurs in local grids region. Thus because of this instability, the electrostatic potential grows rapidly so as to be separated into electron and ion in perturbation region, and then electrons are trapped with heating during growing instability. It is found that these heated and trapped electrons are caused the generation of ESW, and ions are reflected backward and forward at the boundary of the initial perturbation, then form cold ion beam whereas electrons are confined to inside of the potential. Furthermore backward reflected ion beam forms ion holes by ion two-stream instability. On the other hand, as the confined electrons are released, and then released electrons also form hot electron beam, which play an important role in the generation of consecutive ESWs such as broadband electrostatic noise (BEN) observed frequently in space environment. Therefore the reason of the generation of consecutive ESWs is the existence of heated electrons which can sufficiently support energy to produce ESWs.

  • PDF

Structure of a Plasma Ion Source for a Cross-Section SEM Sample (SEM 단면 시료 제작을 위한 플라즈마 이온원의 구조)

  • Won, Jong-Han;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.400-406
    • /
    • 2015
  • This study researched the structure of the source of an ion milling machine used to fabricate a scanning electron microscope (SEM) sample. An ion source is used to mill out samples of over 1 mm dimension using a broad ion beam to generate plasma between the anode and cathode using a permanent magnet. To mill the sample in the vacuum chamber, the ion source should be greater than 6 kV for a positive ion current over $200{\mu}A$. To discover the optimum operating conditions for the ion miller, the diameter of the extractor, anode shape, and strength of the permanent magnet were varied in the experiments. A silicon wafer was used as the sample. The sputter yield was measured on the milled surface, which was analyzed using the SEM. The wafer was milled by injecting 1 sccm of argon gas into the 0.5 mTorr vacuum chamber.

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V.;Vo-Duy, T.;Duong-Gia, D.;Nguyen-Thoi, T.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.297-310
    • /
    • 2018
  • A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

Simulation of Diocotron Instability of a Hollow Electron Beam Used for the Collimation of Proton Beam

  • Jeong, Seung-Il;Lee, Yeong-Ho;Jeong, Mo-Se;Lee, Ho-Jun;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.494-494
    • /
    • 2012
  • 최근에 현대 물리학과 과학의 정점에 있는 초전도가속기 같은 고에너지 빔 가속기 시스템에서 Diocotron instability의 연구가 재조명 되고 있다. 환형의 전자 빔 사이로 프로톤 빔을 통과시키는 구조로써 자기장과 회전하는 전자빔의 상호작용에 기초를 두고 있으며 이 환형의 전자 빔이 고에너지의 프로톤 빔을 집속하는 역할을 한다. 하지만 전자빔이 진행함과 동시에 왜곡되는 현상이 발생하는데 이 왜곡되는 현상을 충분히 조절하지 못한다면 프로톤 빔의 손실과 가속하는 빔의 에너지 저하를 초래하게 될 것이고 또한 실험장치 자체에도 큰 결함을 발생 시킬 수 있다. 따라서 Diocotron instability는 가속기를 활성화 하는데 주요한 테마가 될 것이다. 환형의 전자 빔 층은 정전기적 효과로 인해서 안쪽과 바깥쪽의 속도차가 발생하게 되고 이로 인하여 drift instability 가 발생하게 되어서 왜곡이 발생하고 결국에는 몇 개의 소용돌이를 생성하게 된다. 본 연구에서는 이를 2차원 원통형 구조의 Particle-in-cell 시뮬레이션을 통하여 연구하였으며 자기장의 효과에 따른 환형의 전자빔의 왜곡현상을 지연시키는 방안에 중점을 두었다. 특히 자기장의 세기, 전자빔의 밀도, 전자빔 층의 두께, 전자빔의 프로필의 차이에 의한 결과로 연구하였다.

  • PDF

Investigating the effects of a range shifter on skin dose in proton therapy

  • Ming Wang;Lei Zhang;Jinxing Zheng;Guodong Li;Wei Dai;Lang Dong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.215-221
    • /
    • 2023
  • Proton treatment may deliver a larger dose to a patient's skin than traditional photon therapy, especially when a range shifter (RS) is inserted in the beam path. This study investigated the effects of an RS on skin dose while considering RS with different thicknesses, airgaps and materials. First, the physical model of the scanning nozzle with RS was established in the TOol for PArticle Simulation (TOPAS) code, and the effects of the RS on the skin dose were studied. Second, the variations in the skin dose and isocenter beam size were examined by reducing the air gap. Finally, the effects of different RS materials, such as polymethylmethacrylate (PMMA), Lexan, polyethylene and polystyrene, on the skin dose were analysed. The results demonstrated that the current RS design had a negligible effect on the skin dose, whereas the RS significantly impacted the isocenter beam size. The skin dose was increased considerably when the RS was placed close to the phantom. Moreover, the magnitude of the increase was related to the thickness of the inserted RS. Meanwhile, the results also revealed that the secondary proton primarily contributed to the increased skin dose.

The acceleration of microscopic particles in the near field diffracted from the fiber end (광섬유의 Near field를 이용한 미세입자의 가속에 관한 연구)

  • Kang, Yong-Hoon;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.359-361
    • /
    • 1993
  • The force exerted on particles when the momentum of light is changed at the boundary is used in accelerating particles in the fluid. So far, particles are accelerated by the gaussian beam focused by lenses or microscopic objectives. In this paper, particles arc moved by the light diffracted from the fiber end. And we proposed the possibility of particle acceleration using the fiber end.

  • PDF