• Title/Summary/Keyword: Particle beam

Search Result 386, Processing Time 0.028 seconds

On Feasibility Study of the Charged Particle Beam Pretreatment Process for Non-conducting Metal Coating (무전도 금속 증착을 위한 하전 입자빔 전처리 공정의 타당성 연구)

  • Na, Myung Hwan;Park, Young Sik;Shim, Ha-Mong;Chun, Young Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.179-187
    • /
    • 2014
  • Purpose: Since several problems were found when present non-conducting metal coating process was applied to mass production, we study and develop to improve those problems. Methods: In this paper, a couple of analysis methods such as surface hardness, XPS spectrum analysis, morphology, and reflection ratio were used. Results: This paper suggest a new possibility of Non-conducting thin metal coating method that has quality of mass production phase without UV coating process. Conclusion: By the result of analysis, we can set optimized process conditions of the electro deposition coating using electron beam.

Patterning of CVD Diamond Films For MEMS Application

  • Wang, Xiaodong;Yang, Yirong;Ren, Congxin;Mao, Minyao;Wang, Weiyuan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.167-170
    • /
    • 1998
  • To apply diamond films in microelectromechanical systems(MEMS), it is necessary to develop the patterning technologies of diamond films in the micrometer scale. In this paper, three different kinds of technologies for patterning CVD diamond films carried out by us were demonstrated: selective growth by improved diamond nucleation in DC bias-enhanced microwave plasma chemical vapor deposition (MPCVD) system, selective growth of seeding using diamond-particle-mixed photoresist, and selective etching of oxygen ion beam using Al as the mask. It was show that high selectivity and precise patterns had been achieved, and all the processes were compatible with IC process.

  • PDF

THEORY AND SIMULATION OF BROADBAND ELECTROSTATIC NOISE IN THE MAGNETOTAIL

  • Kim, S.Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.250-272
    • /
    • 1994
  • Various plasma instabilities driven by the ion beams have been proposed in order to explain the broadband electrostatic noise (BEN) in the earth's geomagnetic tail. Ion acoustic, ion-ion two stream, and electron acoustic instabilities have been proposed. Here we consider a theoretical investigation of the generation of BEN by cold streaming ion beams in the earth's magnetotail. Linear theory analysis and particle simulation studies for the plasma sheet, which consists of warm electrons and ions as well as cold streaming ion beams, have been done. Both beam-ion acoustic and ion-ion two stream instabilities easily occur when the beam and warm electron temperature ratio, $T_b/T_e$ is small enough. The numerical simulation results confirm the existence of broadband electrostatic noise whose frequency is ranged from $\omega$=0 to $\omega$$\omega_{pe}$.

  • PDF

Effective Analysis of Beams and Plates using the RKPM (무요소법을 이용한 보와 판의 효과적인 해석)

  • Song, Tae-Han;Seog, Byung-Ho;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.680-685
    • /
    • 2001
  • In this paper, RKPM is extended for solving moderately thick and thin structures. General Timoshenko beam and Mindlin plate theory are used far formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, is introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced method is free of locking and very effectively applicable to deeply as well as shallowly beams and plates.

  • PDF

Design and Implementation of Flexible Sensor to Measure Mechanical Stiffness of Soft Particles (Soft Particle의 강성 측정을 위한 단순한 구조의 유연 물질 센서의 개발)

  • Ihn, Yong Seok;Yang, Minho;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • Increasing interest of human health, building bio-database (Bio DB) has been become a hot issue in life science. Consequently, Single Cell Analysis (SCA) which can explain biodiversity of lives has been a significant factor for building Bio DB. In numerous studies from these analyses, they have been showed that mechanical properties of cells can serve explanation of biological heterogeneity and criterion of disease states. Therefore, measuring mechanical properties of cells have great potential to be used in bio-medical applications. However, traditionally, many researchers have undergone difficult and time consuming work because handling small sized cells usually requires high-skilled technique. Thus, this paper shows robotized stiffness measurement technique using fixed ended beam sensor, precision motorized stage and substrate which have wall structure.

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

Effective Analysis of Beams Using the RKPM (RKPM을 이용한 보의 효과적 해석 방안)

  • 송태한;석병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-79
    • /
    • 2003
  • In this paper, RKPM is extended for solving moderately thick and thin beams. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods is free of locking and very effectively applicable to deep beams as well as shallow beams.

Simulation of Atom Focusing for Nanostructure Fabrication

  • Lee, Chang-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.600-604
    • /
    • 2003
  • The light pressure force from an optical standing wave (SW) can focus an atomic beam to submicrometer dimensions. To make the best of this technique it is necessary to find a set of optimal experimental parameters. In this paper we consider theoretically the chromium atoms focusing and demonstrate that the focusing performance depends not only on the strength of but also on the time atoms take to traverse the force field. The general conclusions drawn can easily be applied to other atoms. To analyze the problem we numerically integrate a coupled time-dependent $Schr{\"{o}}dinger$ equation over a wide range of experimental parameters. It is found that an optimal atomic beam speed-laser intensity pair does exist, which could give substantially improved focusing over the one with the experimental parameters given in the literature. It is also shown that the widely used classical particle optics approach can lead to erroneous predictions.

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.

Effect of Laser Beam on Structural, Optical, and Electrical Properties of BaTiO3 Nanoparticles during Sol-Gel Preparation

  • Mostafa, Massaud;Ebnalwaled, Khaled;Saied, Hussien A.;Roshdy, Reham
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.581-589
    • /
    • 2018
  • This work concentrated on the effect of different laser beams on the microstructure and dielectric properties of $BaTiO_3$ nanoparticles at different calcinations times during the gelling preparation step. The nanoparticles were prepared by the sol-gel method. A green (1000 mW, 532 nm) and red laser beam (500 mW, 808 nm), were applied vertically at the center of stirring raw materials. The samples were sintered at $1000^{\circ}C$ for 2, 4, and 6 h. X-ray diffraction (XRD) analysis showed that samples prepared under the green laser have the highest purity. The FT-IR spectra showed that the stretching and bending vibrations of TiO bond without any other bonds, which are compatible to the X-ray diffraction (XRD) results. Samples were characterized by transmission electron microscopy (TEM), Scan electron microscopy (SEM), and UV-Visible spectrophotometer. Characterization showed the samples prepared under the green laser to have the highest particle size (~ 50 nm) and transparency for all sintering durations. Laser beam effects on electrical characterization were studied. BT nanoparticles prepared under the green laser show the higher dielectric constant, which was found to increase with sintering temperature.