• 제목/요약/키워드: Particle based CFD

검색결과 72건 처리시간 0.027초

Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics

  • Park, Tae-Jin;Choi, Young-Chul;Ham, Jiwoong
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.363-372
    • /
    • 2020
  • Anionic radionuclides pose one of the highest risks to the long-term safety assessments of disposal repositories. Therefore, techniques to immobilize and separate such anionic radionuclides are of crucial importance from the viewpoints of safety and waste volume reduction. The main objective of this study is to design a separator with minimum pressure disturbance, based on the concept of a conventional cyclone separator. We hypothesize that the anionic radionuclides can be immobilized onto a nanomaterial-based substrate and that the particles generated in the process can flow via water. These particles are denser than water; hence, they can be trapped within the cyclone-type separator because of its design. We conducted particle tracking analysis using computational fluid dynamics (CFD) for the conventional cyclone separator and studied the effects due to the morphology of the separator. The proposed sandglass-like design of the separator shows promising results (i.e., only one out of 10,000 particles escaped to the outlet from the separation zone). To validate the design, we manufactured a laboratory-scale prototype separator and tested it for iron particles; the efficiency was ca. 99%. Furthermore, using an additional magnetic effect with the separator, we could effectively separate particles with ~100% efficiency. The proposed sandglass-like separator can thus be used for effective separation and recovery of immobilized anionic radionuclides.

DEM에 기초한 여객 유동 해석 알고리즘 개발 (Development of Algorithm for Passenger Flow Analysis based on DEM)

  • 남성원
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.337-341
    • /
    • 2005
  • Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. In the new algorithm, there are many similarity between multi phase flow and passenger flow. The velocity component of 1st phase corresponds to the direction vector of cell, each particle to each passenger, volume fraction to population density and the momentum equation of particle to the walking velocity equation of passenger, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger, To verify the effectiveness of new algorithm, passenger flow analysis for simple railway station model is conducted. The results for passenger flow in the model station are satisfying qualitatively and quantitatively.

Development of GPU-Paralleled multi-resolution techniques for Lagrangian-based CFD code in nuclear thermal-hydraulics and safety

  • Do Hyun Kim;Yelyn Ahn;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2498-2515
    • /
    • 2024
  • In this study, we propose a fully parallelized adaptive particle refinement (APR) algorithm for smoothed particle hydrodynamics (SPH) to construct a stable and efficient multi-resolution computing system for nuclear safety analysis. The APR technique, widely employed by SPH research groups to adjust local particle resolutions, currently operates on a serialized algorithm. However, this serialized approach diminishes the computational efficiency of the system, negating the advantages of acceleration achieved through high-performance computing devices. To address this drawback, we propose a fully parallelized APR algorithm designed to enhance both efficiency and computational accuracy, facilitated by a new adaptive smoothing length model. For model validation, we simulated both hydrostatic and hydrodynamic benchmark cases in 2D and 3D environments. The results demonstrate improved computational efficiency compared to the conventional SPH method and APR with a serialized algorithm, and the model's accuracy was confirmed, revealing favorable outcomes near the resolution interface. Through the analysis of jet breakup, we verified the performance and accuracy of the model, emphasizing its applicability in practical nuclear safety analysis.

Modelling the dispersion of a tracer gas in the wake of an isolated low-rise building

  • Quinn, A.D.;Wilson, M.;Reynolds, A.M.;Couling, S.B.;Hoxey, R.P.
    • Wind and Structures
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2001
  • Mean concentrations of ammonia gas released as a tracer from an isolated low-rise building have been measured and predicted. Predictions were calculated using computational fluid dynamics (CFD) and two dispersion models: a diffusion model and a Lagrangian particle tracking technique. Explicit account was taken of the natural variation of wind direction by a technique based on the weighted summation of individual steady state wind direction results according to the probability density function of the wind direction. The results indicated that at distances >3 building heights downstream the weighted predictions from either model are satisfactory but that in the near wake the diffusion model is less successful. Weighted solutions give significantly improved predictions over unweighted results. Lack of plume spread is identified as the main cause of inaccuracies in predictions and this is linked to inadequate resolution of flow features and mixing in the CFD model. Further work on non-steady state simulation of wake flows for dispersion studies is recommended.

상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가 (Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler)

  • 양주향;김정은;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

Eulerian Particle Flamelet Modeling for Combustion Processes of Bluff-Body Stabilized Methanol-Air Turbulent Nonpremixed Flames

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1459-1474
    • /
    • 2006
  • The present study is focused on the development of the RIF (Representative Interactive Flamelet) model which can overcome the shortcomings of conventional approach based on the steady flamelet library. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF model can effectively account for the detailed mechanisms of $NO_x$ formation including thermal NO path, prompt and nitrous $NO_x$ formation, and reburning process by hydrocarbon radical without any ad-hoc procedure. The flamelet time of RIFs within a stationary turbulent flame may be thought to be Lagrangian flight time. In context with the RIF approach, this study adopts the Eulerian Particle Flamelet Model (EPFM) with mutiple flamelets which can realistically account for the spatial inhomogeneity of scalar dissipation rate. In order to systematically evaluate the capability of Eulerian particle flamelet model to predict the precise flame structure and NO formation in the multi-dimensional elliptic flames, two methanol bluffbody flames with two different injection velocities are chosen as the validation cases. Numerical results suggest that the present EPFM model has the predicative capability to realistically capture the essential features of flame structure and $NO_x$ formation in the bluff-body stabilized flames.

화염용사 거리에 따른 입자의 거동 및 $Ni_{20}Cr$ 코팅층 특성 연구 (Effect of Flame Spray Distance on Particle Behavior and Morphological Characteristics of $Ni_{20}Cr$ Coated Layers)

  • 이재빈;신동환;이성혁
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.128-133
    • /
    • 2012
  • The present study aims to examine the influence of flame spray distance on the thermal behavior of micro-metal particles and the morphological characteristics of $Ni_{20}Cr$ layers coated on the preheated SCM415 substrates by using the conventional flame spray system. Commercially available nickel-based $Ni_{20}Cr$ particles with a mean diameter of $45{\mu}m$ were used. In addition, CFD simulations using a commercial code (FLUENT ver. 6.3.26) were conducted to estimate temperature and velocity distributions of the continuous and discrete phases before impact on the substrate. From FE-SEM images of coated layers on the substrates, it was observed that as the spray distance decreased, the metal particle morphology showed splash-like patterns and such a short stretch shape, resulting from higher particle momentums and the impact of partially melted particles. Moreover, it was found that the spray distance should be considered as one of important parameters in controlling the porosity and the adhesion strength.

전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구 (Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique)

  • 박노석;권순범;이선주;배철호;김정현;안효원
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

슬로싱 충격현상 해석을 위한 모형실험과 수치해석 적용에 관한 비교 연구: PIV vs. CFD (Comparative Study on Sloshing Impact Flows between PIV and CFD)

  • 양경규;김지응;김상엽;김용환
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.154-162
    • /
    • 2015
  • In this study, experimental and numerical methods were applied to observe sloshing impact phenomena. A two-dimensional rectangular tank filled with water and air was considered with a specific excitation condition that induced a hydrodynamic impact without an air pocket at the top corner of the tank. High-speed cameras and a pressure measurement system were synchronized, and a particle image velocimetry (PIV) technique was applied to measure the velocity field and corresponding pressure. The experimental condition was implemented in a numerical computation to solve incompressible two-phase flows using a Cartesian-grid method. The discretized solution was obtained using the finite difference and constraint-interpolation-profile (CIP) methods, which adopt a fractional step scheme for coupling the pressure and velocity. The tangent of the hyperbola for interface capturing (THINC) scheme was used with the weighed line interface calculation (WLIC) method to capture the interface between the air and water. The calculated impact pressures and velocity fields were compared with experimental data, and the relationship between the local velocity and pressure was investigated based on the computational results.