• Title/Summary/Keyword: Particle accelerator

Search Result 74, Processing Time 0.03 seconds

Modelling on Sheath Expansion of Two-dimensional Grid Electrodes

  • Yi, Changho;Namkung, Won;Cho, Moohyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.243.1-243.1
    • /
    • 2014
  • For two-dimensional grid electrodes immersed in plasmas, sheath expansion due to negative high-voltage pulse applied to the electrode generates high-energy pseudowave. The high-energy pseudowave can be used as ion beam for ion implantation. To estimate ion dose due to high-energy pseudowave, investigation on sheath expansion of grid electroes is necessary. To investigate sheath expansion, an analytic model was developed by Vlasov equation and applying the 1-D sheath expansion model to 2-D. Because of lack of generalized 2-D Child-Langmuir current, model cannot give solvable equation. Instead, for a given grid electrode geometry, the model found the relations between ion distribution functions, Child-Langmuir currents, and sheath expansions. With these relations and particle-in-cell (PIC) simulations, for given grid electrode geometry, computation time was greatly reduced for various conditions such as electrode voltages, plasma densities, and ion species. The model was examined by PIC simulations and experiments, and they well agreed.

  • PDF

Design of High voltage nano pulse generator circuit for ion shutter of particle accelerator (입자가속기 Ion gate 구동을 위한 고전압 nano-pulse 발생기 회로 설계)

  • Oh, Hyun Jun;Jeong, Ku Young;Song, Kwan Seok;Roh, Chung Wook
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.248-250
    • /
    • 2019
  • 입자가속기는 물질의 미세 구조를 밝히기 위해 기본 입자를 가속, 충돌시키는 장치로 최근 암치료 등 의학적 용도로도 이용되고 있다. 그러나 고속으로 고압을 인가시켜야 하는 장치인 만큼 기존에 명확히 설립된 회로가 없다. 이에 본 논문에서는 Ion gate를 등가회로로 구성하여 Fast Switch 장치의 기본 회로를 제안 및 분석, 실험하였다. 또한 기본 회로에서 발생하는 문제들을 개선하고자 RC Input filter와 기타 파라미터들의 설계와 Fast switch와 Ion gate를 잇는 wire 내의 기생성분을 고찰하였고 Ion gate 구동을 위해 기준이 되는 명확한 Fast switch 회로를 제안한다.

  • PDF

Simulation of a Polarimeter for a Spin-Polarized Positron Beam

  • Kim, J.H.;Saito, F.;Suzuki, N.;Wei, L.;Nagashima, Y.;Kurihara, T.;Goto, A.;Itoh, Y.;Lee, Y.S.;Hyodo, T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.116-119
    • /
    • 2002
  • A performance of a new positron polarimeter is investigated by simulation using a charged-particle trajectory program. The results of the ray tracing are presented along with the details of the design parameters and projected system performance. A ray tracing analysis indicates that this design is capable of effectively transmitting positrons at beam energies varying from 0.1 to 30 keV within the beam diameter of 2-6mm. However, the observed reflection of the positrons(lower than 2 keV) at 12 kGauss indicated that further refinement of beam design is needed to produce a better positron polarimeter.

  • PDF

Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA (LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Kim, Dae-Jung;Kim, Jong-Hyun;Chang, Suk-Sang;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2012
  • This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Hee Chang;Lee, Kyohyun;Kim, Seung Heon;Lee, Dong Eun;Jang, Kyoung Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1289-1296
    • /
    • 2021
  • In this study, an electron-scattering device was fabricated to practically use the ultra-high dose rate electron beams for the FLASH preclinical research in Dongnam Institute of Radiological and Medical Sciences. The Dongnam Institute of Radiological and Medical Sciences has been involved in the investigation of linear accelerators for preclinical research and has recently implemented FLASH electron beams. To determine the geometry of the scattering device for the FLASH preclinical research with a 6-MeV linear accelerator, the Monte Carlo N-particle transport code was exploited. By employing the fabricated scattering device, the off-axis and depth dose distributions were measured with radiochromic films. The generated mean energy of electron beams via the scattering device was 4.3 MeV, and the symmetry and flatness of the off-axis dose distribution were 0.11% and 2.33%, respectively. Finally, the doses per pulse were obtained as a function of the source to surface distance (SSD); the measured dose per pulse varied from 4.0 to 0.2 Gy/pulse at an SSD range of 20-90 cm. At an SSD of 30 cm with a 100-Hz repetition rate, the dose rate was 180 Gy/s, which is sufficient for the preclinical FLASH studies.

The Evaluation and Fabrication of Photoconductor Sensor for Quality Assurance of Radiation Therapy Devices (방사선치료기기 정도관리를 위한 광도전체 센서 제작 및 평가)

  • Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.565-569
    • /
    • 2016
  • Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.

A Study on Properties of High Blaine Cement for Shotcrete (숏크리트용 고분말도 시멘트의 특성)

  • Kim, Jae-Young;Kim, Teuk-Jun;Lee, Min-Suk;Ryoo, Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.633-640
    • /
    • 2010
  • This study was performed to get basic information about properties of high blaine cement for shotcrete use. Particle size distribution, setting time and compressive strength test, analysis like as SEM, DSC thermal analysis, XRD was carried out to investigate principle properties of high blaine cement. Setting time of high blaine cement was shorter and compressive strength was higher than those of ordinary portland cement (OPC). Results of analysis showed early hydration products of high blaine cement is smaller and spread widely due to increased specific surface. From the SEM observation and analysis of DSC and XRD results, it was seen that the aluminates accelerators promoted calcium aluminium hydrates while the alkali free accelerators increased ettringite and monosulfates formation. Strength and setting time measurement of cement paste with aluminate accelerator is more effective than the alkali free accelerator in reducing the setting time and increasing early strength while alkali free accelerator is more effective in increasing the strength after 7 days.

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Measurement of Neutron Production Double-differential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions

  • Itashiki, Yutaro;Imahayashi, Youichi;Shigyo, Nobuhiro;Uozumi, Yusuke;Satoh, Daiki;Kajimoto, Tsuyoshi;Sanami, Toshiya;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • Background: Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. Materials and Methods: We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. Results and Discussion: Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. Conclusion: PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.