• Title/Summary/Keyword: Particle Transition

Search Result 279, Processing Time 0.029 seconds

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu;Kim, Eun-jin;Kwon, Yong Rok;Kim, Jung Soo;Kim, Hae Chan;Park, Han Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.100-106
    • /
    • 2022
  • Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.

Preexsiting Suprathermal Electrons and Preacceleration at Quasi-Perpendicular Shocks in Merging Galaxy Clusters

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung;Kim, Sunjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2021
  • Merger shocks with Ms < ~ 3 - 4 have been detected in galaxy clusters through radio observations of synchrotron radiations emitted from cosmic-ray (CR) electrons. The CR electrons are believed to be produced by the so-called diffusive shock acceleration (DSA) at the merger shocks. To describe the acceleration of electrons, the injection into DSA has to be understood. Recent studies have showed that electrons could be energized through stochastic shock drift acceleration (SSDA), a mechanism mediated by multi-scale plasma waves at shock transition zone. However, such preacceleration process seems to be effective only at the supercritical shocks with Ms > ~ 2.3, implying that further studies should be done to explain radio relics with weaker shocks. In this talk, we present the results obtained by fully kinetic 2D particle-in-cell (PIC) simulations, which include pre-existing suprathermal electrons possibly ejected from active galactic nuclei (AGNs) or produced by previous episodes of turbulence/shocks. The simulations indicate that the pre-existing electrons enhance the upstream plasma waves in shocks with Ms < ~ 2.3. However, the wavelength of such waves is not long enough to scatter off suprathermal electrons and energize them to the injection momentum for DSA. Hence, we conclude that preexciting suprathermal electrons alone would not solve the problem of electron acceleration at radio relic shocks.

  • PDF

A PIC Simulation Study for Electron Preacceleration at Weak Quasi-Perpendicular Galaxy Cluster Shocks

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2021
  • In the outskirts of galaxy clusters, weak shocks with Ms < ~3 appear as radio relics where the synchrotron radiation is emitted from cosmic-ray (CR) electrons. To understand the production of CR electrons through the so-called diffusive shock acceleration (DSA), the electron injection into the DSA process at shocks in the hot intracluster medium (ICM) has to be described. However, the injection remains as an unsolved, outstanding problem. To explore this problem, 2D Particle-in-Cell (PIC) simulations were performed. In this talk, we present the electron preacceleration mechanism mediated by multi-scale plasma waves in the shock transition zone. In particular, we find that the electron preacceleration is effective only in the supercritical shocks, which have the sonic Mach number Ms > Mcrit ≈ 2.3 in the high-beta (β~100) plasma of the ICM, because the Alfven ion cyclotron instability operates and hence multi-scale plasma waves are induced only in such supercritical shocks. Our findings will help to understand the nature of radio relics in galaxy clusters.

  • PDF

Preparation of Copoly(styrene/butyl methacrylate) Beads and Composite Particles containing Carbon Black with Hydrophobic Silica as a Stabilizer in Aqueous Solution (수용액에서의 소수성실리카를 이용한 스티렌/부틸메타크릴레이트 입자 및 카본블랙을 함유한 복합체 입자의 합성)

  • Chung, Kyung-Ho;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • A suspension copolymerization of styrene and butyl methacrylate (BMA) in the aqueous phase was conducted at a selected temperature between 65 and $95^{\circ}C$. Hydrophobic silica was selected as a stabilizer and azobisisobutyronitrile (AIBN) as an initiator. Optimum dispersion of silica in water was obtained at pH 10 while polymerization reaction was run at pH 7. TGA and EDS measurements revealed that 90% of silica functioned as a stabilizer and 10% were incorporated into polymeric particles. Average particle diameter decreased with increasing amounts of stabilizer. Molecular weights displayed an increase when the stabilizer concentration reached 1.67 wt%. An increase in the initiator concentration and/or reaction temperature raised the reaction rate but decreased molecular weights. Particle diameter was nearly independent of the initiator concentration and reaction temperature. An increase in the BMA proportion decreased the glass transition temperature and increased the particle diameter with irregularity in shape. Incorporation of carbon black into the particles composed of styrene and BMA prolonged the reaction time before reaching completion. We have confirmed that a suspension copolymerization of styrene and BMA with hydrophobic silica as a stabilizer can produce spherical composite particles with $1-30{\mu}m$ in diameter containing carbon black.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Contraction of Alpha-nickel Hydroxide Layers by Excess Coulombic Attraction of Anions (전기화학적으로 형성된 알파 상 니켈 수산화물의 층간 거리에 미치는 음이온의 영향 연구)

  • Kim, Gwang-Beom;Ganesh Kumar, V.;Bae, Sang-Won;Lee, Jae-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.141-152
    • /
    • 2006
  • In this study computer assisted instruction materials for the ‘Solution' chapter in high school chemistry II textbook were developed based on a view of particle and analyze the effect of the materials on 10th and 11th high school students. The contents of developed materials are dissolution, vapor pressure, the change of boiling point and freezing point, osmosis, and so on which are the major contents of Solution chapter in high school chemistry II textbook. Materials were developed with using animation and simulation for students understanding of the phenomena with a particle view point. Many phenomena in a solution were not simplified by colligative property of solution, but tried to explain by the concept of attraction between solute and solvent molecules. This computer assisted learning materials were developed using Flash 5.0 and Flash 6.0 Action Script. Educational effects of the materials on 10th and 11th grade students represented statistically meaningful increase of concept understanding. Especially the materials were effective to the transition stage or formal stage students in 10th grade and formal stage or the natural science major students in 11th grade.

Growth of Fe3O4 Particles and Their Magnetic Properties (Fe3O4 분말제조와 자기적 특성)

  • Kwon, Woo-Hyun;Lee, Seung-Wha;Chae, Kwang-Pyo;Lee, Jae-Gwang;Sur, Jung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.180-185
    • /
    • 2009
  • Fe$_3$O$_4$ particles, prepared by a sol-gel method, were examined for their structural characteristic, particle shapes and sizes, and their magnetic properties. Two different chemical compositions (using a mol rate Fe$^{2+}$/Fe$^{3+}$ = 1/2 and only Fe$^{2+}$) and 2-methoxyethanol were used for making proper solutions. And the solutions were refluxed and dry in a dry oven and the samples were fired at 200$\sim$600$^{\circ}C$ in the N$_2$ atmosphere. The formation of single-phased spinel ferrite powders was identified with the X-ray diffraction measurement as they were fired at above 250$^{\circ}C$. The result of scanning electron microscopy measurement showed the increase of annealing temperature yielded the particle size increased. The magnetic transition was observed using the Mossbaur spectroscopy measurement. As the ferrite, prepared with the chemical composition (Fe$^{2+}$/Fe$^{3+}$ = 1/2), was fired at 250$^{\circ}C$, 78% of the ferrite had a ferrimagnetic property and 22% of the ferrite was non-magnetic. In case of preparing the sample with only Fe$^{2+}$ and annealed at 200$^{\circ}C$, it had a single phased spinel structure but its particle size was too small to be ferrimagnetic. The annealing temperature above 250$^{\circ}C$ made powders a spinel structure regardless of the preparation method. They had a typical soft magnetic property and their saturation magnetization and coercivity became larger as the annealing temperature increased.

Exposure and Toxicity Assessment of Ultrafine Particles from Nearby Traffic in Urban Air in Seoul, Korea

  • Yang, Ji-Yeon;Kim, Jin-Yong;Jang, Ji-Young;Lee, Gun-Woo;Kim, Soo-Hwan;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.7.1-7.9
    • /
    • 2013
  • Objectives We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. Methods To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with $PM_{10}$ and $PM_{2.5}$ inlets. Results The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to $3.2{\mu}m$. The mass concentrations of the metals in fine particles (0.1 to $1.8{\mu}m$) accounted for 45.6 to 80.4% of the mass concentrations of metals in $PM_{10}$. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the $PM_{10}$ mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. Conclusions We found that exposure to $PM_{2.5}$ and $PM_{10}$ from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the $PM_{2.5}$ treatment were higher than those with $PM_{10}$. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.