• 제목/요약/키워드: Particle Swarm Optimization

검색결과 719건 처리시간 0.034초

Particle Swarm Optimization 탐색과정의 가시화를 위한 툴 설계 (Visualization Tool Design for Searching Process of Particle Swarm Optimization)

  • 유명련
    • 한국멀티미디어학회논문지
    • /
    • 제6권2호
    • /
    • pp.332-339
    • /
    • 2003
  • 경험적 탐색(Modem Heuristics) 방법을 이용하여 복잡한 문제들의 근사해를 구하는 것이 가능하여졌다. 최근 제시된 Particle Swarm Optimization은 경험적 탐색 방법중의 하나로써 조류나 어류 등의 생물의 무리가 각각의 개체가 가지고 있는 정보를 공유해가며 먹이를 찾아가는 과정을 모의한 것이다. 그러나, 다양한 문제들의 근사해를 구하기 위해 Particle Swarm Optimization 방법을 이용하여 왔지만 해를 탐색하는 과정을 보여주기 위한 시도는 이루어지지 않았다. 본 논문에서는 Particle Swarm Optimization의 탐색과정을 가시화 하는 것을 목적으로 한다. 가시화 하는 작업을 통해 그 탐색 능력을 시각적으로 파악하는 것이 가능하며 해결방법에 관한 이해를 돕고 교육적 효과도 기대 가능하다.

  • PDF

대안 부품을 고려한 다계층 시스템의 중복 할당을 위한 입자 군집 최적화 (Particle Swarm Optimization for Redundancy Allocation of Multi-level System considering Alternative Units)

  • 정일한
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.701-711
    • /
    • 2019
  • Purpose: The problem of optimizing redundancy allocation in multi-level systems is considered when each item in a multi-level system has alternative items with the same function. The number of redundancy of multi-level system is allocated to maximize the reliability of the system under path set and cost limitation constraints. Methods: Based on cost limitation and path set constraints, a mathematical model is established to maximize system reliability. Particle swarm optimization is employed for redundant allocation and verified by numerical experiments. Results: Comparing the particle swarm optimization method and the memetic algorithm for the 3 and 4 level systems, the particle swarm optimization method showed better performance for solution quality and search time. Particularly, the particle swarm optimization showed much less than the memetic algorithm for variation of results. Conclusion: The proposed particle swarm optimization considerably shortens the time to search for a feasible solution in MRAP with path set constraints. PS optimization is expected to reduce search time and propose the better solution for various problems related to MRAP.

Coupling Particles Swarm Optimization for Multimodal Electromagnetic Problems

  • ;;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.786_787
    • /
    • 2009
  • This paper proposes a novel multimodal optimization method, Coupling particles swarm optimization (PSO), to find all optima in design space. This method based on the conventional Particle Swarm Optimization with modifications. The Coupling method is applied to make a couple from main particle and then each couple of particles searches its own optimum by using non-stop-moving PSO. We tested out our method and other one, such as ClusteringParticle Swarm Optimization and Niche Particle Swarm Optimization, on three analytic functions. The Coupling Particle Swarm Optimization is also applied to solve a significant benchmark problem, the TEAM workshop benchmark problem 22

  • PDF

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

Particle Swarm Optimization을 이용한 공기-비용 절충관계 최적화 모델에 관한 연구 (A Study on Optimization Model of Time-Cost Trade-off Analysisusing Particle Swarm Optimization)

  • 박우열;안성훈
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.91-98
    • /
    • 2008
  • It is time-consuming and difficulty to solve the time-cost trade-off problems, as there are trade-offs between time and cost to complete the activities in construction projects and this problems do not have unique solutions. Typically, heuristic methods, mathematical models and GA models has been used to solve this problems. As heuristic methods and mathematical models are have weakness in solving the time-cost trade-off problems, GA based model has been studied widely in recent. This paper suggests the time-cost trade-off optimization algorithm using particle swarm optimization. The traditional particle swarm optimization model is modified to generate optimal tradeoffs among construction time and cost efficiently. An application example is analyzed to illustrate the use of the suggested algorithm and demonstrate its capabilities in generating optimal tradeoffs among construction time and cost. Future applications of the model are suggested in the conclusion.

Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints

  • Prabakaran, S.;Senthilkuma, V.;Baskar, G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1441-1452
    • /
    • 2015
  • This paper proposes a new Hybrid Particle Swarm Optimization (HPSO) method that integrates the Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) techniques. The proposed method is applied to solve Economic Dispatch(ED) problems considering prohibited operating zones, ramp rate limits, capacity limits and power balance constraints. In the proposed HPSO method, the best features of both EP and PSO are exploited, and it is capable of finding the most optimal solution for the non-linear optimization problems. For validating the proposed method, it has been tested on the standard three, six, fifteen and twenty unit test systems. The numerical results show that the proposed HPSO method is well suitable for solving non-linear economic dispatch problems, and it outperforms the EP, PSO and other modern metaheuristic optimization methods reported in the recent literatures.

퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술 (Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization)

  • 장우석;강환일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.272-274
    • /
    • 2006
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size

  • Nanda, Bharadwaj;Maity, Damodar;Maiti, Dipak Kumar
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.323-331
    • /
    • 2012
  • A simple and robust methodology is presented to determine the location and amount of crack in beam like structures based on the incremental particle swarm optimization technique. A comparison is made for assessing the performance of standard particle swarm optimization and the incremental particle swarm optimization technique for detecting crack in structural members. The objective function is formulated using the measured natural frequency of the intact structure and the frequency obtained from the finite element simulation. The outcomes of the simulated results demonstrate that the developed method is capable of detecting and estimating the extent of damages with satisfactory precision.

다수의 값을 갖는 이산적 문제에 적용되는 Particle Swarm Optimization (Particle Swarm Optimizations to Solve Multi-Valued Discrete Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.63-70
    • /
    • 2013
  • Many real world optimization problems are discrete and multi-valued. Meta heuristics including Genetic Algorithm and Particle Swarm Optimization have been effectively used to solve these multi-valued optimization problems. However, extensive comparative study on the performance of these algorithms is still required. In this study, performance of these algorithms is evaluated with multi-modal and multi-dimensional test functions. From the experimental results, it is shown that Discrete Particle Swarm Optimization (DPSO) provides better and more reliable solutions among the considered algorithms. Also, additional experiments shows that solution quality of DPSO is not lowered significantly when bit size representing a solution increases. It means that bit representation of multi-valued discrete numbers provides reliable solutions instead of becoming barrier to performance of DPSO.

새로운 위상 기반의 Particle Swarm Optimization 알고리즘 : 정보파급 PSO (A Modified Particle Swarm Optimization Algorithm : Information Diffusion PSO)

  • 박준혁;김병인
    • 대한산업공학회지
    • /
    • 제37권3호
    • /
    • pp.163-170
    • /
    • 2011
  • This paper proposes a modified version of Particle Swarm Optimization (PSO) called Information Diffusion PSO (ID-PSO). In PSO algorithms, premature convergence of particles could be prevented by defining proper population topology. In this paper, we propose a variant of PSO algorithm using a new population topology. We draw inspiration from the theory of information diffusion which models the transmission of information or a rumor as one-to-one interactions between people. In ID-PSO, a particle interacts with only one particle at each iteration and they share their personal best solutions and recognized best solutions. Each particle recognizes the best solution that it has experienced or has learned from another particle as the recognized best. Computational experiments on the benchmark functions show the effectiveness of the proposed algorithm compared with the existing methods which use different population topologies.