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This paper proposes a modified version of Particle Swarm Optimization (PSO) called Information Diffusion 
PSO (ID-PSO). In PSO algorithms, premature convergence of particles could be prevented by defining proper 
population topology. In this paper, we propose a variant of PSO algorithm using a new population topology. We 
draw inspiration from the theory of information diffusion which models the transmission of information or a 
rumor as one-to-one interactions between people. In ID-PSO, a particle interacts with only one particle at each 
iteration and they share their personal best solutions and recognized best solutions. Each particle recognizes the 
best solution that it has experienced or has learned from another particle as the recognized best. Computational 
experiments on the benchmark functions show the effectiveness of the proposed algorithm compared with the 
existing methods which use different population topologies.
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1. Introduction

This paper introduces a new variant of Particle Swarm 
Optimization (PSO) algorithm which is inspired by the theory 
of information diffusion (Thompson, 1979; Kawachi et al., 
2008) and calls it Information Diffusion PSO (ID-PSO). The 
original PSO algorithm is an iterative and stochastic appr-
oach which was first introduced by Kennedy and Eberhart 
(1995) for continuous nonlinear optimization. PSO mimics 
the swarming behaviors of birds and fish. The population 
consists of different solutions called particles. Each particle 

remembers the best solution, called the personal best, which 
it has experienced. Particles also share their information with 
the other members of population. An individual particle is 
influenced by social network which is called population topo-
logy. Among different population topologies, gbest topology 
is most widely used. In the gbest topology, each particle is 
influenced by the best solution found by the entire population. 
The gbest topology usually converges fast and can enhance 
intensified search near the gbest. However, the gbest top-
ology has a weakness for premature convergence which leaves 
large parts of the search space unexplored.

Many researches considered other population topologies 
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             (a) gbest       (b) circle                           (c) wheel
Figure 1. The population topologies of gbest, circles, and wheels
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Figure 2. DMS-PSO Algorithm(m = 3)

besides gbest. Kennedy (1999) was the first research which 
investigated the effect of population topologies. New popula-
tion topologies such as Circles, Wheels, and Random edges 
are introduced in the study. Those topologies are shown in 
<Figure 1>. In the figure, each node represents a particle, and 
an arc between two nodes represents that these nodes are 

directly communicate with each other. The study showed that 
the population topology significantly affects the performance 
of PSO. Kennedy and Mendes (2002) systematically investi-
gated the effects of various population topologies on the PSO 
performance and compared several special-structured graphs. 
Mendes (2004) compared various population topologies while 
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New matching

Oracle

Figure 3. The population topology of ID-PSO

considering various graph statistics such as degree, distance, 
and clustering. In the study, the best results were achieved 
when the average degree of topology was between 3 and 5. 
Note that Kennedy (1999) and Mendes (2004) did not allow 
isolated subpopulations. Løvbjerg et al. (2001) introduced 
the concept of subpopulations. In their study, they divided 
the entire population into same-sized subpopulations. They 
also introduced a recombination mechanism called breeding 
for interaction between subpopulations. Liang and Suganthan 
(2005) extended Løvbjerg et al. (2001) by dynamically re-
grouping subpopulations. The concept of their algorithm is 
illustrated in <Figure 2>. In this example, there are three 
subpopulations and each subpopulation consists of three parti-
cles. The entire population is divided into three subpopula-
tions and each swarm searches for better solutions. These 
subpopulations are randomly regrouped every R generations 
and this process is repeated until a certain stopping criterion 
is met. Experimental results showed that their algorithm is 
better than the other PSO variants.

In this paper, we propose a new population topology which 
is originated from the theory of information diffusion. The 
theory of information diffusion has been studied by sociolo-
gists, psychologist, and mathematicians (Thompson, 1979; 
Kawachi et al., 2008). In information diffusion theory, the 
transmission of information or a rumor is usually modeled as 
a one-to-one interaction between two individuals. Likewise, 
ID-PSO is based on one-to-one interactions between parti-
cles. At each iteration of the algorithm, particles are matched 
in pairs to share their experience or knowledge (solutions). 
After sharing information, each particle updates its recognized 
best solution if the other particle has a better recognized 
solution. Note that the particle’s personal best solution is the 

best solution it has actually experienced and is not influenced 
by solutions from other particles. Unlike the gbest topology, 
when a new global solution is found, it is not announced to 
the entire population. In ID-PSO, we separate the real global 
best and the recognized best. The real global best is a solu-
tion which has the best fitness value in the entire population. 
Contrary to the real global best, the recognized best is the 
best solution among the solutions that a particular particle 
has actually experienced or learned from other particles.

In the gbest topology, the global best influences the entire 
population and could limit search space. However, in ID- 
PSO, the influence of the global best is weakened. As a result, 
particles can make a more extensive search for uncharted 
regions. However, ID-PSO could have poor convergence be-
cause the real global best is unknown to the population. To 
cope with this problem, we introduce a set called informed_ 
particles. The informed_ particles is a subset of the popula-
tion whose size changes as iteration proceeds. The particles 
in this set use the real global best in the update function, 
making the function equivalent to that in the gbest topology. 
<Figure 3> shows the population topology of ID-PSO. The 
entire particles are matched two by two. The members of 
informed_ particles are connected to an oracle which informs 
the real global best to those particles. And the set informed_ 
particles dynamically adjusts its members. Computational expe-
riments on the benchmark functions show the performance of 
the proposed algorithm compared with the existing methods.

The remainder of this paper is organized as follows. Section 
2 reviews several PSO variants. Section 3 provides a detailed 
explanation of ID-PSO algorithm. Section 4 shows and com-
pares ID-PSO with existing PSO variants. Finally, Section 5 
provides concluding remarks and future research directions.
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2.  PSO and its variants

2.1 Constricted Particle Swarm Optimization
This section introduces Constricted Particle Swarm Opti-

mization (CPSO) which uses the gbest topology. CPSO was 
proposed by Clerc and Kennedy (2002) and ensures the con-
vergence of the search procedures and has a better solution 
quality than the original PSO. Assume an optimization pro-
blem which has r decision variables. Let n be the population 
size (i.e., number of particles). Each particle i (i = 1, …, n) 
has a r-dimensional position vector Pi = (pi1, pi2, …, pir) and a 
velocity vector Vi = (vi1, vi2,…, vir). The fitness of each par-
ticle is evaluated by a cost function fitness(Pi). Each particle 
keeps its personal best pbesti and among these personal best, 
the global best gbest is identified. Each particle i updates its 
velocity and position for dimension j using following equa-
tions :

vij ← χ(vij+ rand1(pbestij-pij)
          + rand2(gbestj-pij)),                (1)

 
          

 , 

(2)

and
pij ← pij + vij,    (3)

where,  and  are the cognitive coefficients, rand1 and 
rand2 are random numbers drawn from a uniform distribution 
U(0, 1), and χ is the constriction coefficient. Clerc and 
Kennedy (2002) recommended setting  and  to 2.05, so 
 +  is 4.1 and χ is 0.7298. 

2.2 Fully Informed Particle Swarm (FIPS)
In a classical PSO algorithm, each individual is influenced 

by the best particle of its neighborhood. In the Fully Infor-
med Particle Swarm (FIPS) model, which was proposed by 
Mendes et al. (2004), social influence comes from all the 
particles in the neighborhood. In the FIPS model, the velo-
city of each particle is calculated as follows :

vij ← χ(vij +(pmj - pij),          (4)

and

∈

 
 


 , (5)

   
∈
 , (6)

and   


∈
 

, (7)

where, Ωi is the set of neighbors of i and max = 4.1. And 
pbestk is the best solution found by particle k. Note that the 
particle iʼs best solution (pbesti) is not included in (4). In the 
experiments of Mendes et al. (2004), pbesti was included in 
the formula but the influence of including pbesti was not 
significant. χ means the same with above (2)

2.3 Dynamic Multi-Swarm Particle Swarm 
Optimizer (DMS-PSO)

Dynamic Multi-Swarm Particle Swarm Optimizer (DMS- 
PSO), which was proposed by Liang and Suganthan (2005), 
changes swarms dynamically. DMS-PSO is a kind of parallel 
searching algorithm which uses multiple swarms that have 
relatively small population size. In DMS-PSO, the entire popula-
tion is divided into subpopulations with size m and these 
subpopulations are randomly regrouped every R generations. 
Once a subpopulation is determined, information is exchanged 
within the subpopulation. When velocity is calculated, the 
gbest topology is used. The study of Liang and Suganthan 
(2005) found that most of the high quality solutions come 
from the parameter setting at m = 3 and R = 5, i.e., each sub 
population consists of three particles and these subpopula-
tions are randomly regrouped every 5 generations.

3.  ID-PSO

3.1 Description of ID-PSO Algorithm
There is a main difference between CPSO and ID- PSO. In 

ID-PSO, gbesti represents the recognized best solution of 
particle i. We assume that the global best is unknown to the 
particles. The velocity of particle i for dimention j can be 
calculated by 

vij ← χ(vij+ rand1(pbestij-pij)
+ rand2(gbestj-pij)).  (8)

Except for the subscript i next to gbest, Equation (1) and 
(8) are identical. The procedure of ID-PSO algorithm is 
presented in <Figure 4>. In the initialization step, the initial 
position of each particle is randomly determined and the 
initial velocity vector is set to (0, …, 0). For each iteration, 
all particles are matched one by one, and the algorithm 
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1. Initialize.
1.1 Randomly Generate position vector Pi = (pi1, pi2,…, pir) and set velocity vector Vi = (vi1, vi2,…, vir) to (0, 0,…, 0), 

1 ≤ i ≤ n for n particles.
1.2 Set pbesti and gbesti to Pi.

2. Repeat until the stopping criterion is met.
2.1 Match all particles into pairs.
2.2 For two matched particles i and j, update gbesti to gbestj if fitness(gbesti) > fitness(gbestj). 

Otherwise, update gbestj to gbesti.
2.3 For each particle i, update velocity vector Vi by

vij ← χ(vij+φ1 rand1(pbestij-pij)+φ2 rand2(gbestij-pij)), ∀j = 1,…, r
2.4 For each particle i, update particle’s position by

pij ← pij+vij, ∀j = 1, …, r
2.5 Update the set informed_particles. If pbesti has not been improved for t1 iterations, then particle i is added to the 

set informed_particles.
2.6 If the real global best has not been improved for t2 iterations, bottom 50% particles are randomly initialized while 

the best half of population is kept.

Figure 4. The procedure of the proposed algorithm

prevents two matched particles from matching again for the 
next θ iterations. In our implementation, θ is set to 15. Note 
that there could be no feasible matching of particles if θ is 
set to too large. After a feasible matching is obtained, a 
particle i exchanges information with its partner j. If particle 
j has a better gbestj than gbesti, particle i updates its recog-
nized best gbesti. Otherwise, gbestj is updated with gbesti. 
After information is exchanged, each particle calculates its 
new velocity vector and updates its position vector. The 
algorithm updates the set informed_ particles throughout the 
process. If the personal best solution of particle i has not 
been improved for t1 iterations, then particle i is added to the 
set informed_ particles. Any member of informed_ particles 
is removed from the set as soon as its personal best is im-
proved.

If the real global best has not been improved for t2 iter-
ations, bottom 50% particles are randomly initialized while 
the best half of population is kept. In our implementation t1 
and t2 are set to 30 and 200 respectively. Note that these pa-
rameter values were determined through preliminary experi-
ments.

4.  Experimental results

This Section evaluates the performance of ID-PSO and com-
pares the results with following three algorithms :

∙CPSO with the gbest topology,

∙FIPS model with average degree between 3 and 4,
∙DMS-PSO with m = 3 and R = 5.

The size of entire population is set to 20 for CPSO and 
FIPS. For DMS-PSO and ID-PSO, we use 30 particles. The 
experiment was conducted on 5 benchmark functions with 
dimensions 10 and 30. These functions are listed below :

∙Sphere Function

     





, 

    where xi∈[-5.12, 5.12]

∙Rosenbrock’s Function

     




    , 

    where xi∈[-2.048, 2.048]

∙Ackely’s Function

      



 





 

 







   ,
    where xi∈[-32.768, 32.768]

∙Griewank’s Function

     















 , 

    where xi∈[-600, 600]
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Table 1. The number of successful runs

Number of variables Function Name ID-PSO CPSO DMS-PSO FIPS
10 Sphere(10) 100% (25) 92% (23) 100% (25) 100% (25)
10 Rosenbrock(10) 0% (0) 0% (0) 0% (0) 0% (0)
10 Ackley(10) 100% (25) 88% (22) 100% (25) 60% (15)
10 Griewank(10) 0% (0) 0% (0) 0% (0) 0% (0)
10 Rastrigin(10) 4% (1) 0% (0) 0% (0) 0% (0)
30 Sphere(30) 100% (25) 36% (9) 100% (25) 88% (22)
30 Rosenbrock(30) 0% (0) 0% (0) 0% (0) 0% (0)
30 Ackley(30) 80% (20) 0% (0) 72% (18) 0% (0)
30 Griewank(30) 20% (5) 4% (1) 40% (10) 8% (2)
30 Rastrigin(30) 0% (0) 0% (0) 0% (0) 0% (0)

Average Success Rate(Overall Success) 40.4% (101) 22% (55) 41.2% (103) 25.6% (64)

∙Rastrigin’s Function

     




   , 

    where xi∈[-5.12, 5.12]

We programmed the four algorithms in C++ language and 
ran the experiments on a Pentium IV 3.0GHz with 1GB 
RAM. Since the global optimum values of these functions 
are zero, we define the stopping criterion as

  , (9)

where, f denotes the objective function value obtained by 
an algorithm. We also set the number of particles to 20 and 
the maximum number of function evaluation (NEF) to 10,000 
×D where D is a dimensionality of a benchmark function.

<Table 1> presents the test results of ID-PSO and compares 
them with CPSO, FIPS and DMS-PSO. The first and second 
columns show the number of dimensions and the names of 
functions. Each algorithm is repeated for each function for 25 
times as suggested by previous literature (Liang and Suganthan, 
2005). The numbers in the remaining columns show the rate 
of successful runs out of 25 repetitions. If an algorithm finds 
a solution that satisfies the stopping criterion within the 
maximum NEF, we call this run a successful run. And the 
numbers in the parentheses is the number of successful runs 
out of 25 repetitions. The results show that DMS-PSO shows 
the highest overall success rate and ID-PSO is slightly worse 
than DMS-PSO. For two test functions, ID-PSO obtains 
more successful runs than other algorithms. For three func-
tions, ID- PSO shows the same success rate with DMS-PSO. 
For Griewank(30), DMS-PSO obtains more successful runs 
than ID-PSO. One possible reason why DMS-PSO performs 

better for Griewank function is that the subpopulation of size 
m performs local search independently for R generations. 
Note that Localtelli (2003) showed that Multistart algorithms, 
which sample uniform random points over feasible region 
and perform independent local search from them, work well 
for the Greiwank function.

Second experiment compares the average objective function 
values obtained by each algorithm. In this experiment, we do 
not use the stopping criterion, i.e., all the function are 
evaluated 10,000×D times. <Table 2> summarizes the results. 
The average objective function values which are calculated 
to four decimal places are presented in <Table 2>. The num-
bers in the parentheses is the standard deviation. Compared 
to DMS-PSO, ID-PSO shows better performance for 6 func-
tions on average. DMS-PSO performed better than ID-PSO 
on Rosenbrock’s function only. It is worth noting that DMS- 
PSO outperforms other algorithms not only in average objec-
tive function values but also in standard deviation. This result 
implies that DMS-PSO consistently generates good solutions 
for Rosenbrock’s function. For Rastrigin’s function, ID-PSO 
consistently generates good solutions. Note that previous 
literature such as Kennedy(1999) also concluded that the 
effect of population topologies is largely dependent on the 
functions.

5.  Conclusions

We have proposed a modified PSO called ID-PSO which 
uses a new population topology. The basic idea employed in 
ID-PSO is reducing the influence of the global best solution 
by adopting the theory of information diffusion which models 
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Table 2. The average objective function values

Number of 
variables Function Name ID-PSO CPSO DMS-PSO FIPS

10 Sphere(10) 0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

0.0000
(0.000)

10 Rosenbrock(10) 2.0493
(2.5600)

40.7097
(199.3924)

0.6929
(1.4793)

32.8717
(108.3504)

10 Ackley(10) 0.0000
(0.000)

1.9319
(4.0317)

0.0000
(0.000)

0.6394
(1.6675)

10 Griewank(10) 0.0552
(0.0225)

1.0203
(4.4902)

0.0759
(0.0357)

0.8137
(0.6581)

10 Rastrigin(10) 2.2434
(2.5088)

13.5712
(7.7329)

7.4025
(3.1735)

35.6789
(9.8587)

30 Sphere(30) 0.0000
(0.000)

6.2915
(6.4100)

0.5243
(1.8146)

0.0000
(0.000)

30 Rosenbrock(30) 9325.0988
(20315.6063)

39180.2258
(41192.2252)

18.2707
(59.7978)

2395.3543
(10985.2994)

30 Ackley(30) 0.7511
(2.3747)

10.6339
(3.2773)

0.9804
(1.8383)

5.3765
(2.9050)

30 Griewank(30) 0.0082
(0.0117)

32.8931
(32.8443)

0.0120
(0.0126)

0.5386
(0.4959)

30 Rastrigin(30) 47.5677
(24.9138)

111.4934
(27.8326)

85.0162
(28.3894)

208.9554
(23.4295)

the transmission of information as one-to-one interactions 
between people. The strength of ID-PSO is its simplicity. 
Although the differences between ID-PSO and PSO variants 
such as CPSO and FIPS are relatively minor, our algorithm 
performs better. The performance of ID-PSO is also compar-
able to DMS-PSO which outperformed 7 recent PSO variants 
in the study of Liang and Suganthan (2005).

ID-PSO calls for further research in several aspects. While 
current ID-PSO selects two particles randomly for matching 
if they were not matched in last certain iterations, the per-
formance of algorithm could be improved if different criteria 
are applied. For example, a particle may be matched with its 
closest particle. In addition, ID-PSO could be applied to ot-
her domains. Recently, PSO has been applied to various op-
timization problems such as bin packing (Liu et al., 2008), 
flow shop scheduling (Tseng and Liao), single machine sche-
duling (Anghinolfi and Paolucci, 2009) and binary classifi-
cation (Unler and Murat, 2010). However, ID-PSO is designed 
for continuous variable functions and may not be suitable for 
discrete variable problems. Proper representation methods 
are needed for discrete variable problems.
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