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Abstract - This paper proposes a novel multimodal optimization 
method, Coupling particles swarm optimization (PSO), to find all 
optima in design space. This method based on the conventional 
Particle Swarm Optimization with modifications. The Coupling method 
is applied to make a couple from main particle and then each couple 
of particles searches its own optimum by using non-stop-moving 
PSO. We tested out our method and other one, such as 
ClusteringParticle Swarm Optimization and Niche Particle Swarm 
Optimization, on three analytic functions. The Coupling Particle 
Swarm Optimization is also applied to solve a significant benchmark 
problem, the TEAM workshop benchmark problem 22
 

1. Introduction

  In many electromagnetic designs, a stationary design which has 
small design sensitivities is preferred to an optimum design having 
big design sensitivities. It is because a design with big design 
sensitivities, when it is related with mass production process, may 
have a poor performance due to a manufacturing error. Finding all 
optima of an objective function, in this viewpoint, is necessary so 
that a designer may select a good robust design taking account of 
constraints. In recent years, therefore, there have been many attempts 
to improve particles swarm optimization (PSO) so that it may find 
not only a global optimum point but also all optima including local 
optimum point [1]-[2]. The Clustering PSO and Niche PSO, among 
them, are popular. 
The Clustering PSO has it base on clustering algorithm which 

classifies particles into different groups and allows each group to 
move toward not a global best point but a group best point [1]. On 
the other hand, the Niche PSO basically follows the conventional PSO 
at the beginning of iterations, and divides the whole particles into 
several groups and, then, follows the idea of Clustering PSO[1]-[2]. 
This is known more effective than the Clustering PSO, however, it 
failed to find all optima, or it requires a huge number of objective 
function calculations when it is applied to engineering optimization 
problems [3]. 
In this paper, a robust and efficient PSO algorithm, Coupling 

PSO, is developed to locate all optima of a multimodal function with 
less number of objective function calculations. The proposed algorithm 
is applied to some analytic functions to test its effectiveness and 
applied to TEAM problem 22 [4]

2. Coupling Particles Swarm Optimization Algorithm

  In the conventional PSO, the velocity of i-th particle is updated as 
follows [2]:

       

   
                   (1)

                                    (2) 

where  ,  ,   are the position, velocity and personal best position 

of the i-th particle, respectively, and g is the global best position,   
is the inertia,  ,   are cognitive and social coefficients, and  ,  

are uniform random number within [0,1], and N is the total number 

of the particles. When the coefficient 2 is set to zero, equation (1) is 
called as cognition-only model.  

The overall flow of the proposed Coupling PSO is summarized as 
follows:

Step 1. Initial particles
Initially N main particles are randomly generated, and allowed to 

move according to the cognition only model. Each main particle is 
expected to move toward not a global optimum point but its nearest 
local optimum point. 

Step 2. Coupling 
When a main particle updates its personal best position, i.e., 

when      is satisfied, it forms a i-th couple by 

generating a new particle near by itself as shown in Fig. 1. The 
position of the new particle is given randomly as follows:

                (2) 

where r is a uniform random number within [0,1]. 
Step 3. Movement of a couple 

The movement of a couple is just like that of a group in the 
Clustering PSO. The two particles in this i-th couple will move 
according to the following rule:  

       

      
             (3) 

where   is the couple best position of k-th couple and   is a 

uniform random number within [0,1], and   is a very small number 
(for example, 10-4% of the design space). The last term is for 
non-stop-moving and  becomes 1 only when the condition, 
         is satisfied for 3 consecutive iterations.
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Fig. 1. Generation of a new particle.     Fig. 2. Elimination.
 
Step 4. Elimination of a couple and main particle 
When a couple or a main particle is very near to another couple, 

the couple or the main particle is eliminated as shown in Fig. 2. This 
process will increase the numerical efficiency of the proposed 
Coupling PSO.  

Step 5. Stopping criterion 
The k-th couple will stop its moving when its movement is 

very small (for example, less than   of the design space) for 10 
consecutive iterations and its couple best position will be an optimum. 
The algorithm will be terminated when all couples stop without 
regard to main particles.
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Function Optima
% of all optima found

Average function 

calls

Clustering Niche Proposed Niche Proposed

F1(x) 4 100 100 100 40,000 20,546

F2(x) 9 83 100 100 40,000 26,144

F3(x) 17 14 100 100 40,000 38,352

Optima
R2

[m]

h2/2

[m]

d2

[m]

Bstray 

[mT]

Energy

[MJ]

Opt1 2.994 0.355 0.280 0.7818 172.01

Opt2 3.268 0.376 0.222 1.0891 183.99

Opt3 3.415 0.458 0.169 1.2234 186.30

TEAM[4] 3.080 0.239 0.394 0.8896 180.03

Variable

[Unit]

R1

[m]

h1/2 

[m]

d1

[m]

R2

[m]

h2/2

[m]

d2

[m]

J1

[MA/m2]

J2

[MA/m2]

Min - - - 2.6 0.204 0.1 - -

Max - - - 4.5 1.1 0.6 - -

Value 2.0 0.8 0.27 - - - 22.5 -22.5

3. Numerical Results and Conclusion
   
3.1 Analytic Problems 
    
    NPSO was order to check the validity and numerical efficiency of 
the proposed Coupling PSO, the following three analytic functions 
with two design variables are considered:

   
   

 ∈  (4)

  
  




   ∈  (5)

  


  




 

  




 ∈           (6)

The performances of three methods are compared in Table I by 
their percentages of successful trials of finding all optima. It is 
clearly shown that, the Coupling PSO and Niche PSO successfully 
locate all optima while the Clustering PSO can not, and the Coupling 
PSO requires less number of function calls than the Niche PSO. It is 
thought because the Coupling PSO eliminates the couples and main 
particles which would locate the same local optimum. It is also 
shown that the number of function calls in the proposed Coupling 
PSO is proportional to the number of optima found. In each test the 
number of initial particles is set to 50, and the maximal iteration is 
limited to 800.

TABLE I

 Experiments Results

        

3.2 Optimization in Electromagnetic Device
    
    TEAM problem 22 was chosen to show the application of 
Coupling PSO in electromagnetic optimization. This problem consists 
on the minimization of the magnetic flux density at a certain distance 
from a superconducting magnetic energy storage device. The design 
parameters are three variables which define the size and position of 
the outer coil of the device. The range of search space and other 
parameters are shown in Table II. The problem is defined as the 
minimization of the value of  :


  



  




                               (7)

subject to:

 ≤                                           (8)




≤                                (9)

where the stray field   is evaluated at 22 equidistant points 

along line a and, as shown in Fig.3,   is the maximum magnetic 

flux density at the outer coil,   is defined as the following 

critical curve of NbTi superconductor as shown in Fig.4, and Energy 
is the stored magnetic energy. In this paper, the tolerance for the 
energy constraint has been set at 5% of the reference value   = 

180MJ.
The Coupling PSO has been applied to solve this problem with 

number of particles is 50, maximum iteration is 1,000. There are 12 
optima which are located after 42,000 function calls. There are 6 
optima which are satisfied both constraints (8) and (9) among 12 
optima found. Three of the best points found are shown in Table III.

From the Table III, the candidates obtained by Coupling PSO 
are compared to the result from TEAM 22. The first optimum (Opt1) 

presents a very low value for  , the second shows a slightly 

larger value for   and the third is the biggest   value. 

However, the deviation from the reference value for the Energy of 
the Opt1 is the biggest one. The deviation of Opt3 is the second and 
the Opt2 has the smallest deviation. So, by using Coupling PSO, 
there are multiple optima which could be located. The additional 
optima provide a range of design options for the designer, who may 
decide, for example, for a solution with lower sensitivity to variations 
in the design parameters, even if it presents a slightly higher value 
for the objective. The Opt2 is selected as the solution.
   In this paper, Coupling PSO is proven that it can successfully 
locate all optima, including global optimum. Moreover, Coupling PSO 
required less number of objective function evaluations than that of 
Clustering PSO and Niche PSO. These advantages make the 
algorithm suitable for electromagnetic problems.
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Fig.3. Design variables     Fig.4. Critical curve of the material

TABLE II

Variable Ranges and Values Used

TABLE III

Optimization Results
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