• 제목/요약/키워드: Particle Morphology

검색결과 772건 처리시간 0.027초

초음파 분무 열분해 공정을 이용한 수계 SiO2 Sol로부터의 구형 SiO2 분말 합성 (Fabrication of Spherical SiO2 Powders from Aqueous SiO2 Sol via Ultrasonic Pyrolysis)

  • 이지현;황해진;한규성;황광택;김진호
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.570-576
    • /
    • 2016
  • Using the ultrasonic pyrolysis method, spherical $SiO_2$ powders were synthesized from aqueous $SiO_2$ sol as a starting material. The effects of pyrolysis conditions such as reaction temperature, $SiO_2$ sol concentration, and physical properties of precursor were investigated for the morphologies of the resulting $SiO_2$ powders. The particle size, shape, and crystallite size of the synthesized $SiO_2$ powders were demonstrated according to the pyrolysis conditions. Generally, the synthesized $SiO_2$ particles were amorphous phase and showed spherical morphology with a smooth surface. It was revealed that increased crystallite size and decreased spherical $SiO_2$ particle size were obtained with increases of the pyrolysis reaction temperature. Also, quantity of spherical $SiO_2$ particles decreased with the decrease in the concentration and surface tension of the precursor.

코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용 (Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application)

  • 이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제14권3호
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

$Al_2O_3$$Y_2O_3$ 입자를 함유한 액상소결 SiC 재료의 특성 (Properties of Liquid Phase Sintered SiC Materials Containing $Al_2O_3$ and $Y_2O_3$ Particles)

  • 이상필;이문희;이진경
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of liquid phase sintered (LPS) SiC materials, with the addition of oxide powder, were investigated, in conjunction with a detailed analysis of their microstructures. LPS-SiC materials were fabricated at a temperature of 1820 $^{\circ}C$ under an argon atmosphere, using three different starting sizes of SiC particles. The sintering additive for the fabrication of the LPS-SiC materials was an $Al_2O_3-Y_2O_3$ mixture with a constant composition ratio ($Al_2O_3/Y_2O_3$: 1.5). The particle sizes of the commercial SiC powderswere 30 nm, 0.3 $\mu$m, and 3.0 $\mu$m. The flexural strength of the LPS-SiC materials was also examined at elevated temperatures. A decrease in the starting size of the SiC particles led to an increase in the flexural strength of the LPS-SiC materials, accompanying a highly dense morphology with the creation of a secondary phase. Such a secondary phase was identified as $Y_3Al_2(AlO_4)2$. The flexural strength of the LPS-SiC materials greatly decreased with an increase in the test temperature, due to the creation of a large amount of pores.

면직물의 복합가공(II) - 키토산과 숯 - (Bicomponent Finishing of Cotton Fabrics(II) - Chitosan and Charcoal -)

  • 배기현;이신희
    • 한국의류산업학회지
    • /
    • 제10권5호
    • /
    • pp.748-755
    • /
    • 2008
  • The purpose of this study is to investigate the effect of chitosan treatment on the dyeing of cotton fabric using charcoal as colorants. Particle size of charcoal, dyeability(K/S), SEM morphology of dyed fabrics and color fastness were also investigated. In this study, cotton fabrics were treated with a crosslinking agent epichlorohydrin in the presence of chitosan to provide the cotton fabrics the dyeing properties of natural dye by the chemical linking of chitosan to the cellulose structure. The results obtained were as follows; Mean average diameter of charcoal was 1.44 ${\mu}m$. According to various conditions, the dyeing effects of 1% chitosan treatment on the dyeing of cotton fabrics using charcoal were the highest with 10%(owb) of charcoal at $90^{\circ}C$ for 120minutes and non-treatment of cotton fabrics were the highest with 15%(owb) of charcoal at $90^{\circ}C$ for 150minutes. Overall, K/S value of 1% chitosan treatment of cotton fabrics on the natural dyeing using charcoal was higher than non-treatment of cotton fabrics. It was observed the surfaces of cotton fabrics treated with chitosan were adsorbed with charcoal powders of particle size more than a non-treated chitosan fabric by SEM. The cotton fabrics were dyed with blackish gray color by charcoal gradually according to treating chitosan. The K/S value, that is indicative of dye affinity, became higher as the increase of treated chitosan concentration. The color fastness of charcoal, washing and light fastness was excellent as 4-5 grade.

Investigation of Properties of Synthetic Microparticles for a Retention and Drainage System

  • Lee, Sa-Yong;Hubbe Martin A.;Park, Sun-Kyu
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.61-66
    • /
    • 2006
  • Over the past 20 years there has been a revolution involving the use of nano or macro size particles as drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our on preliminary research showed that the SMM system has advantages in both of drainage and retention compared with montmorillonite (bentonite), which one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. Streaming current titrations with highly charged polyelectrolytes were used to measure the charge properties of SMM and to understand the interactions among SMM particles, fibers, fiber fines, and cationic polyacrylamide (cPAM) as a retention aid. It was found that pH profoundly affects the charge properties of SMM, due to the influence of Al-ions and the Si-containing particle surface. SEM pictures, characterizing the morphology, geometry and size distribution of SMM, showed an broad distribution of primary particle size. Dilution of SMM mixturee appeared to wash out particles smaller than 100 nm from the surface of larger particles, which themselves appeared to be composed of fused primary particles. DSC thermoporometry was used to measure the size distribution of nanopores within SMM particles.

  • PDF

Chitin으로부터 다양한 chitosan의 제조와 특성 (Preparation and Characterizations of Various Chitosan from Chitin)

  • 조형재;황성규;이기창;이한섭;김판기
    • 한국식품위생안전성학회지
    • /
    • 제13권1호
    • /
    • pp.34-40
    • /
    • 1998
  • 수산계 폐기물로부터 chitin 유도체의 다양한 응용에도 불구하고 chitin 의 상업적 이용은 적절한 용매의 부재와 화학적 제한성으로 인하여 제한적으로 이용되었다. 그러므로 Mima의 방법을 응용하여 NaOH 농도, 반응시간, 온도 등을 조절하여 탈아세틸화반응에 의한 다양한 점도가 다른 chitosan을 제조하였으며, 2종의 각Y제를 이용하여 가교결합에 의한 결정성을 증가시킨 가교 chitosan을 제조하였따. 제조한 점도가 다른 chitosan과 가교 chitosan 유도체를 다양한 분석기기를 이용하여 측정하였다. chitosandmf 제조시 반응시간을 높이거나 반응온도를 높이면 탈아세틸화는 높아지나 분자사슬의 크기, 즉 점도와 분자량은 감소하였다. 반응온도, 반응시간과 알칼리 농도에 따라 활용분야에 맞은 chitosan을 제조할수 있다.

  • PDF

수산화마그네슘 분산상의 제조와 PET 부직포 섬유의 난연 코팅제 적용 (Preparation of Mg(OH)2 Dispersion and its Application to PET Non-woven Textile as Flame Retardant Coating)

  • 임형미;현미경;정상옥;이동진;이승호
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.537-542
    • /
    • 2011
  • Magnesium hydroxide as a non-halogen flame retardant has increasing attention due to its non-toxicity, high decomposition temperature and smoke suppressant ability during combustion. For the application of magnesium hydroxide retardant to the textile by soaking and coating method, the prerequisite for the coating is a small particle size, stable dispersion, and adhesion to the textile. The dispersion of $Mg(OH)_2$ particles and stability of the coating was checked by monitoring the change of transmittance and backscattering by varying the types of dispersion agents, binder, solvent, and $Mg(OH)_2$ source, and their compositions in the coating. The $Mg(OH)_2$ dispersion coating was applied to PET(poly(ethylene terephthalate)) non-woven textile. The physical properties are characterized by surface morphology, amount of coating, particle dispersion, and adhesion test. The flame retardant $Mg(OH)_2$ coated textile has been compared by limited oxygen index(LOI) and thermal gravimetry and differential scanning calorimetry(TG-DSC). It was found that phosphorous additive may give synergistic effect on $Mg(OH)_2$ flame retardant coating to make the flame retardant PET non-woven textile.

압출 적층 조형법과 입자 추출법을 결합한 이중 공극 BCP/Silica 인공지지체의 제작 (Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method)

  • 사민우;김종영
    • 대한기계학회논문집A
    • /
    • 제40권10호
    • /
    • pp.865-871
    • /
    • 2016
  • 조직 공학에서는 전통적인 인공지지체 제작 방식인 가스 발포, 염 침출, 스폰지 복제 그리고 동결주조 법 등이 이용되고 있다. 하지만 다양한 공극 형태 및 크기를 가지고 있어서 세포 상호 작용 효과 및 충분한 기계적 특성에 한계가 있다. 그러나 열 용해 적층 법은 조직공학에서 폴리머 재료를 이용하여 다양한 3차원 인공지지체를 제작할 수 있는 가장 적절한 기술이다. 따라서 본 연구에서는 PCL 몰드를 제작하고 실리카와 알긴산 나트륨 염을 포함하는 세라믹 슬러리를 제조하여 몰드에 주입시켰으며, 1일 동안 자연 건조를 시켰다. 제작된 3차원 슬러리 몰드는 PCL 몰드의 제거 및 슬러리를 경화시키기 위해 $100^{\circ}C$의 오븐에서 2시간 열처리 되었고, 열처리 후에 $1100^{\circ}C$에서 소결되었다. 제작된 인공지지체는 주사전자현미경을 통해 관찰되었고, 압축 시험을 통해 알긴산 나트륨 염의 혼합량에 따른 인공지지체의 기계적 특성은 평가되었다.

Formulation and Cytotoxicity of Ribosome-Inactivating Protein Mirabilis Jalapa L. Nanoparticles Using Alginate-Low Viscosity Chitosan Conjugated with Anti-Epcam Antibodies in the T47D Breast Cancer Cell Line

  • Wicaksono, Psycha Anindya;Sismindari, Sismindari;Martien, Ronny;Ismail, Hilda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2277-2284
    • /
    • 2016
  • Ribosome-inactivating protein (RIP) from Mirabilis jalapa L. leaves has cytotoxic effects on breast cancer cell lines but is less toxic towards normal cells. However, it can easily be degraded after administration so it needs to be formulated into nanoparticles to increase its resistance to enzymatic degradation. The objectives of this study were to develop a protein extract of M. jalapa L. leaves (RIP-MJ) incorporated into nanoparticles conjugated with Anti-EpCAM antibodies, and to determine its cytotoxicity and selectivity in the T47D breast cancer cell line. RIP-MJ was extracted from red-flowered M. jalapa L. leaves. Nanoparticles were formulated based on polyelectrolyte complexation using low viscosity chitosan and alginate, then chemically conjugated with anti-EpCAM antibody using EDAC based on carbodiimide reaction. RIP-MJ nanoparticles were characterised for the particle size, polydispersity index, zeta potential, particle morphology, and entrapment efficiency. The cytotoxicity of RIP-MJ nanoparticles against T47D and Vero cells was then determined with MTT assay. The optimal formula of RIP-MJ nanoparticles was obtained at the concentration of RIP-MJ, low viscosity chitosan and alginate respectively 0.05%, 1%, and 0.4% (m/v). RIP-MJ nanoparticles are hexagonal with high entrapment efficiency of 98.6%, average size of 130.7 nm, polydispersity index of 0.380 and zeta potential +26.33 mV. The $IC_{50}$ values of both anti-EpCAM-conjugated and non-conjugated RIP-MJ nanoparticles for T47D cells (13.3 and $14.9{\mu}g/mL$) were lower than for Vero cells (27.8 and $33.6{\mu}g/mL$). The $IC_{50}$ values of conjugated and non-conjugated RIP-MJ for both cells were much lower than $IC_{50}$ values of non-formulated RIP-MJ (>$500{\mu}g/mL$).

연속적 Seed 유화중합법에 의한 마이크론 크기의 Poly(n-Butyl Acrylate) 라텍스입자 제조 (Preparation of Micron Size Poly(n-Butyl Acrylate) Latex Particle by Sequential Seeded Emulsion Polymerization)

  • 김지훈;서숭혁;남완우;김경찬;강신원;하기룡
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.889-894
    • /
    • 1999
  • 유화중합법으로 마이크론 크기의 고분자 라텍스 입자 제조시, 라텍스 입자의 응집, 2세대 입자의 생성 등의 문제 때문에 원하는 형태, 크기, 구조를 지니는 입자를 제조하기가 매우 어려운 것으로 알려져 있지만 구조적, 기능적 고분자 미립자를 합성할 수 있는 장점이 있다. 따라서, 본 연구에서는 마이크론 크기의 라텍스 입자를 제조하는데 있어서, 미립자 성분으로 n-butyl acrylate(BA)를 선정하고, 개시제의 농도, 유화제의 양, 반응 온도, 가교제의 양 및 교반기의 속도 등의 반응 변수 조건에 따른 seed 유화 중합을 실시하여 각 반응 변수들이 입자의 크기 및 분산도에 미치는 영향에 대하여 조사하였다. 실험 결과를 바탕으로 반응 변수의 최적 조건들을 규명하여 연속적 seed 유화중합법으로 $0.14{\sim}3.67{\mu}m$의 평균 입자경을 갖는 poly(n-butyl acrylate)(PBA) 라텍스 입자를 제조할 수 있었다.

  • PDF