• Title/Summary/Keyword: Particle Morphology

Search Result 772, Processing Time 0.034 seconds

Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

  • Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-$La_2O_3$ in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-$La_2O_3$, respectively. Similar to the RAW264.7 cells, the toxicity of nano-$La_2O_3$ was stronger than that of micro-$La_2O_3$ in the A549 cells. We found that nano-$La_2O_3$ was absorbed in the lungs more and was eliminated more slowly than micro-$La_2O_3$. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure.

Preparation and Characterization of Suvarna Bhasma Parada Marit - Characterization of Suvarna Bhasma Parada Marit -

  • Thakur, Kapil;Gudi, Ramacharya;Vahalia, Mahesh;Shitut, Shekhar;Nadkarni, Shailesh
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.36-44
    • /
    • 2017
  • Objectives: The goal of this study was to characterize Suvarna Bhasma Parada Marit by using the Ayurvedic test parameters, physico-chemical tests, and various instrumentation techniques. Methods: Suvarna Bhasma, an Ayurvedic formulation manufactured as per Bharat Bhaishajya Ratnakar 5/8357 (BBR), has been studied using various instrumentation techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), laser particle size distribution (PSD) analysis, fourier transform infrared spectroscopy (FT-IR), and atomic absorption spectroscopy (AAS), and physico-chemical parameters, such as the loss on drying (LOD), loss on ignition (LOI), and acid insoluble Ash (AIA) were determined. In addition, Ayurvedic tests, such as Rekhapurnatva (enterable in the furrows of the fingers), Varitaratwa (floatable over water), Nirdhoomta (smokeless), Dantagre Kach-Kach (gritty particle feeling between the teeth), were performed. Results: The XRD study showed Suvarna Bhasma to be crystalline in nature and to contain more than 98% gold. The mean size of the gold crystallites was less than 10 microns, and the morphology was globular and irregular. Suvarna Bhasma contains gold as its single and major element, with EDAX and FT-IR spectra showing that it is more than 98% pure gold. The moisture content (LOD) is less than 0.5%, the LOI is less than 2%, and the AIA is not less than 95%. The Ayurvedic tests, as specified above, helped to confirm the quality of Suvarna bhasma prepared as per the text reference (BBR). Conclusion: This chemical characterization of Suvarna Bhasma performed in this study by using modern instrumentation techniques will be helpful in understanding its pharmacological actions and will help in establishing quality protocols and specifications to substantiate the safety, efficacy & quality of Suvarna Bhasma.

Study on Catalytic Activity of the Selective CO Oxidation and Characterization Using $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite Catalysts ($La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite촉매의 선택적 CO 산화반응 및 특성 분석에 관한 연구)

  • Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2007
  • [ $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ ](X=0, 0.1, 0.3, 0.5) perovskites were prepared by coprecipitation method at pH 7 or pH 11 and its catalytic activity of selective CO oxidation was investigated. The characteristics of these catalysts were analyzed by $N_2$ adsorption, X-ray diffraction(XRD), SEM, $O_2$-temperature programmed desorption(TPD). The pH value at a preparation step made effect on particle morphology. The smaller particle was obtained with a condition of pH 7. The better catalytic activity was observed using catalysts prepared at pH 7 than pH 11. The maximum CO conversion of 98% was observed over $La_{0.5}Ce_{0.5}Co_{0.7}Cu_{0.3}O_{3-{\alpha}}$ at $320^{\circ}C$. Below $200^{\circ}C$, the most active catalyst was $La_{0.5}Ce_{0.5}Co_{0.9}Cu_{0.1}O_{3-{\alpha}}$, of which conversion was 92% at $200^{\circ}C$. By the substitution of Cu, the evolution of ${\alpha}$-oxygen was remarkably enhanced regardless of pH value at preparation step according to $O_2$-TPD. Among the different ${\alpha}$-oxygen species, the oxygen species evolved between $400^{\circ}C$ and $500^{\circ}C$, gave the better catalytic performance for selective CO oxidation including $La_{0.5}Ce_{0.5}CoO_3$ in which Cu was absent.

Preparation and Characteristics of Te Fine Particles Doped SiO2 Glass Thin Films by Sol-gel Method (졸-겔법에 의한 Te 미립자 분산 SiO2 유리 박막의 제조와 특성)

  • Mun, Chong-Soo;Kang, Bong-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • Nanocomposite of Te doped $SiO_2$ films was prepared for the new functional materials like non-linear optic materials, selective absorption and transmission films. The effects of particle size and morphology with different hydrolysis conditions on the properties were examined with TGA/DTA. XRD. UV-spectrometer, SPM, SEM and EDS. It was found that Te/$SiO_2$ films showed high absorption peak at 550nm visible region by plasma resonance of Te fine particles. The Rm surface roughness of the films was about 2.5 nm and the size of Te particles was 5~10nm.

Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment (수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성)

  • Seo, Min-Hyun;Oh, Sang-Jin;Kida, Tetsuya;Shimanoe, Kengo;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

Effect of Poly(vinyl alcohol) and Poly(vinyl alcohol) Mono Thiol on the Stability Properties of Poly(vinyl acetate) Latex (폴리비닐알코올과 폴리비닐알코올모노티올이 폴리초산비닐 라텍스의 안정성에 미치는 영향)

  • 이서용;박이순
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.579-588
    • /
    • 2000
  • The effects of protective colloids on the colloid stability of poly(vinyl acetate) (PVAc) latex was investigated. The stability of PVAc latex in reactive poly(vinyl alcohol) mono thiol (PVALT) (DP=1080) having 78.4% saponification value was better than poly (vinyl alcohol)(PVA) (DP=1100) having 81.6% saponification value. The colloidal stability of PVAc latex particles improved drastically with increase of the reactive PVALT. The particle surface morphology of PVAc latex was examined by transmission electron microscopy (TEM). It was shown that particle size of 1ha latexes decreased with increasing reactive PVALT concentration. Therefore, the stabilities of latex for reactive PVALT protective colloid was superior to that of PVA ones. This result is due to the introduction of many thiol groups that induce chemical bonds at PVAc latexes surface, so that the formation of PVALT-b-PVAc block copolymer via the reaction of PVAc with reactive PVALT. In addition, zeta potential of the PVAc latexes decreased with increasing sodium carbonate concentration.

  • PDF

Preparation and Characterization of Unsaturated Poly(3-hydroxyalkanoate) Nanoparticles (불포화 폴리히드록시알칸오에이트 나노입자의 제조 및 특성)

  • 한정현;김승수;신병철;이영하;홍성욱
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.542-548
    • /
    • 2003
  • Nanoparticles with unsaturated poly(hydroxyalkanoate)s (UPHAs) biosynthesized with Pseudo-monas oleovorans were prepared by spontaneous emulsification solvent diffusion method. The influence of nanoparticle formation was investigated with various experimental parameters such as sonication conditions, sol-vent, surfactant and polymer contents, etc. The physical and chemical properties of UPHAS and its nanoparticles were characterized using $^1$H- and $\^$13/C-nuclear magnetic resonance spectroscopies, attenuated total reflection infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography. The morphology of particles was observed using scanning electron microscope and the size and distribution of nanoparticles were measured with electrophoretic light scattering spectrophotometer. The mean diameter of particles decreased with increasing sonication amplitude and time. The addition of ethanol into UPHAS chloroform solution decreased the particle size presumably due to increased solvent diffusion into water phase. The particle size increased with increased the concentration of UPHAS solution. Under the 2-4% poly(vinyl alcohol) (PVA) aqueous solution the minimum mean diameter of particles was shown. The higher degree of hydrolysis and degree of polymerization of PVA increased the mean diameter of particles.

Nanocrystalline Diamond Coating on Steel with SiC Interlayer (철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅)

  • Myung, Jae-Woo;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.

Effect of solvent and precursor on the CeO2 nanoparticles fabrication (CeO2 나노 분말 합성에 미치는 용매 및 전구체의 영향)

  • Ock, Ji-Young;Son, Jeong-Hun;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.118-122
    • /
    • 2018
  • Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.

The treatment of coal fly ash for recycling as ceramic raw materials : II. The effects of sampling condition and pH treatment in elutriation (요업 원료로 재활용하기 위한 석탄회의 처리 : II. 채취조건 및 수비선별시 pH의 영향)

  • 허화범;정철원;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.627-639
    • /
    • 1996
  • Charateristics of Ansan and Boryong coal fly ashes collected at different seasons were investigated for the recycling them as ceramic raw materials. The effect of pH treatment on the classification of Ansan coal fly ashes by elutriation was discussed. Charateristics of ansan and boryong coal fly ashes were not significantly changed with power plants and seasons. major crystalline phases were mullite and quartz. These results suggested that coal fly ashes cab be used as raw materials instead of clay minerals. However, particle size distribution was very broad from a few $\mu\textrm{m}$ to over $100\;\mu\textrm{m}$. Especially, ansan coal fly ashes have various morphologies. Therefore, coal fly ashes should be classified before using as raw materials. Because of higher dispersion by pH treatment, spherical cenospheres were mainly collected in the 4th step and particle size distribusion was also decreased by elutriation for the ansan coal fly ashes. The specific surface area of the sample collected in the 4th step was $1.24\;m^{2}/g$ which was smaller than that of not treated Ansan coal fly ashes.

  • PDF