• Title/Summary/Keyword: Particle Monitoring

Search Result 348, Processing Time 0.027 seconds

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • v.5 no.3
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Space Weather Monitoring System for Geostationary Satellites and Polar Routes

  • Baek, Ji-Hye;Lee, Jae-Jin;Choi, Seong-Hwan;Hwang, Jung-A;Hwang, Eun-Mi;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2011
  • We have developed solar and space weather monitoring system for space weather users since 2007 as a project named 'Construction of Korea Space Weather Prediction Center'. In this presentation we will introduce space weather monitoring system for Geostationary Satellites and Polar Routes. These were developed for satisfying demands of space weather user groups. 'Space Weather Monitoring System for Geostationary Satellites' displays integrated space weather information on geostationary orbit such as magnetopause location, nowcast and forecast of space weather, cosmic ray count rate, number of meteors and x-ray solar flux. This system is developed for space weather customers who are managing satellite systems or using satellite information. In addition, this system provides space weather warning by SMS in which short message is delivered to users' cell phones when space weather parameters reach a critical value. 'Space Weather Monitoring System for Polar Routes' was developed for the commercial airline companies operating polar routes. This provides D-region and polar cap absorption map, aurora and radiation particle distribution, nowcast and forecast of space weather, proton flux, Kp index and so on.

  • PDF

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol

  • Wenbin, Zhang;Lanyu, Liu;Jin, Zhao;Fei, Gao;Jian, Wang;Liping, Fang
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

Applicaion of Neural Network for Machine Condition Monitoring and Fault Diagnosis (기계구동계의 손상상태 모니터링을 위한 신경회로망의 적용)

  • 박흥식;서영백;조연상
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 1998
  • The morphologies of the wear particles are directly indicative of wear process occuring in the machine. The analysis of wear particle morphology can therefore provide very early detection of a fault and can also ofen facilitate a dignosis. For this work, the neural network was applied to identify friction coefficient through four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris generated from the machine. The averages of these parameters were used as inputs to the network. It is shown that collect identification of friction coefficient depends on the ranges of these shape parameters learned. The various kinds of the wear debris had a different pattern characteristics and recognized relation between the friction condition and materials very well by neural network. We discuss how the network determines difference in wear debris feature, and this approach can be applied for machine condition monitoring and fault diagnosis.

Performance and reusability of certified and uncertified face masks (보건용 마스크 초미세먼지 제거 성능 평가 및 재사용 연구)

  • Lee, Haebum;Kim, Seojeong;Joo, HungSoo;Cho, Hee-joo;Park, Kihong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.191-202
    • /
    • 2019
  • In this study, performance (particle removal efficiency and breathing resistance) of several commercially available face masks (electrostatic filter masks (KF80 certified), a nanofiber filter mask (KF80 certified), and an uncertified mask) with their filter structure and composition were evaluated. Also, effects of relative humidity (RH) of incoming air, water and alcohol exposure, and reusability on performance of face masks were examined. Monodisperse and polydisperse sodium chloride particles were used as test aerosols. Except the uncertified mask filter, PM2.5 removal efficiency was found to be higher than 90%, and the nanofiber filter mask had the highest quality factor due to the low pressure drop and high removal efficiency (nanofibers were arranged in a densely packed pore structure and contained a significant amount of fluorine in addition to carbon and oxygen). In the case of the KF80 certified mask, the removal efficiency was little affected when the RH of incoming air increased. When the mask filters were soaked in water, the removal efficiency of mask filters was degraded. In particular, the uncertified mask filter showed the highest removal efficiency degradation (26%). When the mask was soaked in alcohol, the removal efficiency also decreased with the greater degree than the water soaking case. The nanofiber mask filter showed the strongest resistance to alcohol exposure among tested mask filters. During evaluation of reusability of masks in real life, the removal efficiency of certified mask filter was less than 4% for 5 consecutive days (2 hours per day), while the removal efficiency of uncertified mask filter significantly decreased by 30% after 5 days.

A Characteristic Study of the Aerosol Size Distribution in Pohang Province (포항 지역 대기에서 측정된 에어로졸 입자분포 특성 연구)

  • Seo, Moon Hyeok;Chang, Hyuk Sang
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.151-160
    • /
    • 2012
  • Health effects caused by the ultrafine particles in ambient air are great concern to the public health, and the strict measuring and monitoring of the ambient aerosol are required. In this work, the characteristics of the aerosol size distribution in Pohang province are studied. Optical particle counters (Grimm APS 1108 and 1109) were used to measure the aerosol size distribution in the area. Locations near the national monitoring site located in the industrial and the residence area were selected for the measuring sites of this study, and the locations in border area between the industry and the residence were selected for the reference of the comparison. In the industry site, it is found that the concentration of aerosol particles near the size of 5 ${\mu}m$ appear characteristically and the fluctuations in concentration with respect to time are minimal. The mass concentration of the aerosol above 10 ${\mu}m$ in diameter in the industry area was found to fluctuate significantly. The mass portion of $PM_{10}$ and PM2.5 to TSP in the residence area were 83% and 51% respectively. In the industrial regional, it was found that the mass portion of PM10 and $PM_{2.5}$ to TSP were 76% and 35% respectively. In the boundary area the mass portion of $PM_{10}$ and $PM_{2.5}$ to TSP were 78% and 54% respectively.

Parameter Estimation of 2-DOF Dynamic System using Particle Filter (파티클 필터를 이용한 2 자유도 동역학 시스템의 파라미터 추정)

  • Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • Currently, the majority of systems which are non-linear are in need of the correct system equations for controlling and monitoring. Therefore, the correct estimation of parameters is crucial. Generally, parameters are changed due to system deterioration or sudden environmental alterations. Given the limitations of system monitoring unstable controls can arise. In the following paper, the parameter estimation method is proposed using software filters to combat these system instabilities. For dynamic instances, a powerful particle filter is used to control the nonlinear and noisy environments in which they take place. Using a setup simulation comprised of a slider and pendulum, the state variable of noise is obtained. After collecting the data, the proposed algorithm is used to estimate both the state variable and its parameters. Finally, these results are checked with correct parameter estimations to evaluate and verify the algorithms performance.

A study on spatial distribution characteristics of air pollutants in Bucheon-si using mobile laboratory (이동측정차량을 활용한 부천시 대기오염의 공간 분포 특성 연구)

  • Kim, Jong Bum;Kim, Chang Hyeok;Noh, Sujin;Hwang, Eun Young;Park, Duckshin;Lee, Jeong Joo;Kim, Jeongho
    • Particle and aerosol research
    • /
    • v.17 no.1
    • /
    • pp.9-20
    • /
    • 2021
  • As a large city advanced, the urban environment is becoming an issue. The contribution of vehicle emissions in air pollutants was very high according to the clean air policy support system (CAPSS). In order to improve the air quality in large cities, it is necessary to establish improvement measures by sources, analyzing the air quality of roadside. We divided Bucheon city into 4 regions to investigate the roadside pollutants of each district using the mobile laboratory (ML) and air quality monitoring station (AQMS). ML was used to measure pollutants emitted from vehicles and AQMS data was used as a comparison group of ML data. As a measurement result of pollutants in the roadside, the concentration of air pollutants in industrial & engineering complex area was the highest and concentration of air pollutants in residential & forest complex area was lower. By street, Bucheon-ro, Sinheung-ro, Sosa-ro, and Gyeongin-ro were identified as high concentrations. Therefore, further researches on preparing management measures for roads in the hot-spot area are needed.