Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.2.097

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol  

Wenbin, Zhang (Ecological and Environmental Monitoring Center of Chongqing)
Lanyu, Liu (Ecological and Environmental Monitoring Center of Chongqing)
Jin, Zhao (Ecological and Environmental Monitoring Center of Chongqing)
Fei, Gao (Ecological and Environmental Monitoring Center of Chongqing)
Jian, Wang (Ecological and Environmental Monitoring Center of Chongqing)
Liping, Fang (China University of Geosciences)
Publication Information
Membrane and Water Treatment / v.13, no.2, 2022 , pp. 97-104 More about this Journal
Abstract
With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.
Keywords
Cu/Fe; degradation; iron; nanoparticles; p-nitrophenol; reduction;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Adekola, F.A., Orimolade, B.O. and Adebayo, G.B. (2017), "Removal of p-nitrophenol from aqueous solution using synthesized silica-magnetite composite", University of Ilorin, Ilorin, Naigeria.
2 Abd El Maksod, I.H. and Saleh, T.S. (2010), "The use of nano supported nickel catalyst in reduction of p-nitrophenol using hydrazine as hydrogen donor", Green Chem. Lett. Rev., 3(2), 127-134. https://doi.org/10.1080/17518251003596143.   DOI
3 Jung, J., Sibag, M., Shind, B. and Cho, J. (2020), "Experimental investigation of organic fouling mitigation in membrane filtration and removal by magnetic iron oxide particles", Membr. Water Treat., 11(3), 223-229. http://doi.org/10.12989/mwt.2020.11.3.223.   DOI
4 Wang, T.C., Qu, G.Z., Li, J. and Liang, D.L. (2014), "Remediation of p-nitrophenol and pentachlorophenol mixtures contaminated soil using pulsed corona discharge plasma", Sep. Purif. Technol., 122, 17-23. http://doi.org/10.1016/j.seppur.2013.10.043   DOI
5 Rashidi, H., Sulaiman, N.M.N., Hashim, N.A., Bradford, L., Asgharnejad, H. and Larijani, M.M. (2020), "Development of the ultra/nano filtration system for textile industry wastewater treatment", Membr. Water Treat., 11(5), 333-334. http://doi.org/10.12989/mwt.2020.11.5.333.   DOI
6 Luo, M.H., Xia, K.J., Zhou, G.H. and Ge, W. (2016), "Synthesis of Pd/PEI-GNs composites as electrocatalyst for reduction of p-nitrophenol", Chem. J. Chinese U., 37(12), 2268-2274. http://doi.org/10.7503/cjcu20160338.   DOI
7 Ma, C., Chen, Y. and Chen, J. (2015), "Surfactant-assisted preparation of FeCu catalyst for Fischer-Tropsch synthesis", J. Brazil. Chem. Soc., 26(7),1520-1526. https://doi.org/10.5935/ 0103-5053. 20150121.   DOI
8 Park, J. and Bae, S. (2018), "Formation of Fe nanoparticles on water-washed coal fly ash for enhanced reduction of p-nitrophenol", Chemosphere, 202, 733-741. http://doi.org/10.1016/j.chemosphere.2018.03.152.   DOI
9 Rouhllah, D., Mohammad, B.M., and Abbas, Z. (2018), "Evaluation of raw wastewater characteristic and effluent quality in Kashan Wastewater Treatment Plant" Membr. Water Treat., 9(4), 273-278. http://doi.org/10.12989/mwt.2018.9.4.273.   DOI
10 Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E. and Lovley, D.R. (1998), "Lovley, Quinonemoieties act as electron acceptors in the reduction of humic substances by humics- reducing microorganisms", Environ. Sci. Technol., 32(1), 57-62. http://doi.org/10.1080/15533174.2012.684258.   DOI
11 Sullivan, P., Agardy, F.J. and Clark, J.J. (2005), The Environmental Science of Drinking Water, Butterworth-Heinemann, Oxford, U.K.
12 Tang, J., Tang, L. and Feng, H.P. (2016), "pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zero valent iron under aerobic or anoxic conditions", J. Hazard. Mater., 320, 581-590. http://doi.org/10.1016/j.jhazmat.2016.07.042.   DOI
13 Cervantes, F.J., Rodriguez-Lopez, J.L. and Pena-Martinez, M. (2016), "Enhanced Reduction of p-nitrophenol by a methanogenic consortium promoted by metallic nanoparticles", Water Air Soil Pollut., 227(10), https://doi.org/10.1007/s11270-016-3058-x.   DOI
14 Wang, X., Zhu, M. and Liu, H. (2013), "Modification of Pd-Fe nanoparticles for catalytic degradation of 2,4-dichlorophenol", Sci. Total Environ., 449, 157-167. http://doi.org/10.1016/j.scitotenv.2013.01.008.   DOI
15 Ali, Z.I., Bekhit, M., Sokary, R. and Afify, T.A. (2019), "Radiation synthesis of copper sulphide/poly(vinyl alcohol) nano- composites films: An efficient and reusable catalyst for p-nitrophenol reduction", Int. J. Environ. An. Ch., 99(13), 1313-1324. https://doi.org/10.1080/03067319.2019.1619717.   DOI
16 Anjali, M.S., Shrihari, S. and Sunil, B.M. (2019), "Potential valorisation of ferrous slag in the treatment of water and wastewater: A review", Adv. Environ. Res., 8(1), 55-69. http://doi.org/10.12989/aer.2019.8.1.055.   DOI
17 Chen, R.F., Yang, L.P. and Guo, Y.K. (2018), "Effect of p-nitrophenol degradation in aqueous dispersions of different crystallized goethites", Photochem. Photobiol., 353(2), 337-343. http://doi.org/10.1016/j.jphotochem.2017.11.028.   DOI
18 Lai, B., Zhang, Y.H. and Li, R. (2014b), "Influence of operating temperature on the reduction of high concentration p-nitrophenol (PNP) by zero valent iron (ZVI)", Chem. Eng. J., 249, 143-152. http://doi.org/10.1016/j.cej.2014.03.108.   DOI
19 Heidari, A., Keikha, R., Haghighi, M.S. and Hosseinabadi, H. (2018), "Numerical study for vibration response of concrete beams reinforced by nanoparticles", Struct. Eng. Mech., 67(3), 311-316. http://doi.org/10.12989/sem.2018.67.3.311.   DOI
20 Lai, B., Zhang, Y.H. and Chen, Z.Y. (2014a), "Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles", Appl. Catal. B Environ., 144, 816-830. http://doi.org/10.1016/j.apcatb.2013.08.020.   DOI
21 Lien, H.L. and Zhang, W.X. (2007a), "Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination", Appl. Catal. B Environ., 77(1), 110-116. https://doi.org/10.1016/j.apcatb.2007.07.014.   DOI
22 Wang, X.Y., Xing, D.F. and Ren, N.Q. (2016), "p-nitrophenol degradation and microbial community structure in a biocathode bioelectrochemical system", Rsc Adv., 6(92), 89821-89826. http://doi.org/10.1039/c6ra17446a.   DOI
23 Yuan, Y., Yuan, D.H. and Zhang, Y.H. (2017), "Exploring the mechanism and kinetics of Fe-Cu-Ag trimetallic particles for p-nitrophenol reduction", Chemosphere, 186(6), 132-139. http://doi.org/10.1016/j.chemosphere.2017.07.038.   DOI
24 Yusoff, A.H., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., 6(1), 1-19. http://doi.org/10.12989/anr.2018.6.1.001.   DOI
25 Li, M.L. and Chen, G.F. (2013b), "Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres", Nanoscale, 5(23), 11919-11927. http://doi.org/10.1039/c3nr03521b.   DOI