• Title/Summary/Keyword: Particle Matter

Search Result 518, Processing Time 0.028 seconds

Infiltration Characteristics of Particulate Matter at a Korean Apartment House (국내 아파트의 미세먼지 유입 특성)

  • Joo, SangWoo;Ji, JunHo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • Infiltration characteristics of airborne particulate matter had been investigated in real-life for about 90 days over 2 years in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 ㎡. Airtightness was measured by fan depressurization, and the ACH50 was 2.41 times per hour. In and outdoor particle concentrations were measured by optical particle counters. Infiltration factors and filtration efficiencies of the house, which reflect the removal of outdoor particles penetrating building envelope and the deposition inside a building, were obtained from data screened based on an empirical evaluation process. Infiltration factor of fine particles showed a range from about 42% at 0.4 m/s of wind speed to 72% at 4.2 m/s of wind speed with closed windows and doors. Filtration efficiency was like a MERV 13 grade filter with an open window outside at a balcony at low outdoor wind speed under 1 m/s. The grade decreased to MERV 11 by opening another outside window at the other balcony. Filtration efficiencies decreased as much as 29% in average at a range of 0.3~2.5 ㎛.

Development of Drying Systems for Accurate Measurement of Particulate Matter by means of Optical Particle Measuring Instruments (광산란 계측기의 미세먼지 측정 정확도 향상을 위한 수분제거 전처리 기술 개발)

  • Kang, Doo Soo;Oh, Jung Eun;Lee, Sang Yul;Shin, Hee Joon;Bong, Ha Kyung;Choi, Joohyun;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.191-203
    • /
    • 2018
  • IIn this study, we have developed drying systems for reducing the error by humidity on measuring particulate matter (PM) in the ambient air with optical particle measuring instruments. Two types of drying systems were designed: drying systems using heating and dilution methods. In addition, 3 types of drying systems using a heating method were designed: Type A (1 hole), B (3 holes) and C (7 holes). After making them, the laboratory and field tests were carried out to evaluate the developed drying systems. As a result, it was shown that the PM concentrations obtained by PM monitoring devices with drying systems agree well with that of the reference devices. Therefore, it could be concluded that the drying systems can be applied to PM monitoring devices for real-time monitoring of the ambient aerosols.

e-Science Paradigm for Astroparticle Physics at KISTI

  • Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • The Korea Institute of Science and Technology Information (KISTI) has been studying the e-Science paradigm. With its successful application to particle physics, we consider the application of the paradigm to astroparticle physics. The Standard Model of particle physics is still not considered perfect even though the Higgs boson has recently been discovered. Astrophysical evidence shows that dark matter exists in the universe, hinting at new physics beyond the Standard Model. Therefore, there are efforts to search for dark matter candidates using direct detection, indirect detection, and collider detection. There are also efforts to build theoretical models for dark matter. Current astroparticle physics involves big investments in theories and computing along with experiments. The complexity of such an area of research is explained within the framework of the e-Science paradigm. The idea of the e-Science paradigm is to unify experiment, theory, and computing. The purpose is to study astroparticle physics anytime and anywhere. In this paper, an example of the application of the paradigm to astrophysics is presented.

Comparison between the Pair Fractions of Dark Matter Halos and Galaxies in Cosmological Simulations

  • An, Sung-Ho;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2016
  • We investigate the pair fractions of dark matter halos and galaxies in cosmological simulations. The cosmological simulations are performed by a tree-particle-mesh code GOTPM (Grid-of-Oct-Tree-Particle-Mesh) and the dark matter halos are identified by a halo finding algorithm PSB (Physically Self-Bound). The 'galaxy' pair fractions are obtained from galaxy catalogues of L-Galaxies semi-analytical galaxy formation runs in the Millennium database. We present and compare the pair fractions of the dark matter halos and galaxies as functions of redshifts, halo masses and ambient environments.

  • PDF

International Comparison of Contents about Particle Concept in National Science Curricula (국가 수준 과학과 교육과정의 입자 관련 내용 국제 비교)

  • Kim, Dong-Hyun;Kim, Hyo-Nam
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.2
    • /
    • pp.164-176
    • /
    • 2012
  • The purpose of this study was to find some suggestions for reorganization of contents about particle concept of matter in Korean science curriculum. For the purpose of this study, authors analyzed features of Korean science curriculum and compared science curricula of Korea, USA, UK, Japan and Finland. From the result of this study, authors find some features and important suggestions about reorganization of contents about particle in science curriculum. First, the sequence of contents about particle concepts in 2009 Revised National Curriculum was similar to that in the 6th National Science Curriculum. And the feature of 2009 Revised National Curriculum showed the articulation of contents about particle concept. If contents about particle concept is increased in elementary science curriculum, the total articulation would be increased. Second, the presenting sequence of atomic structure-first and laws about atom-later should be changed to laws about atomic-first and atomic structure-later. This presenting sequence is grounded by science curricula of other countries, history of science and developmental psychology. And science curriculum of Korea was required specific extended concept statement like science curricula of USA or UK. Also, Korean science curriculum could benchmark Finnish science curriculum if we want to develop some integrated learning activities such as those in STS or STEAM program.

Examining the Concept of Matter in the 7th National Science Curriculum (제7차 과학과 교육과정에서 물질 개념에 대한 고찰)

  • Hong, Mi-Young;Jeon, Kyung-Moon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • The purpose of this study was to examine the 7th national science curriculum (chemistry domain) regarding the meanings of ‘mulgil' (Korean), the particulate nature of matter, and the state of matter. It was found that the term of ‘mulgil' was being used vaguely as representing material, matter, or substance without clear definition. This was problematic by reason that it could hinder students from having the concept of substance. Regarding the particulate nature of matter, molecule was introduced as a basic unit of matter at grade 7, prior to atom and ion, which were introduced at grade 9 and 10, respectively. It is necessary to reconsider the sequence of each particle concept to provide students with more consistent and comprehensive understanding of structure of matter. In the case of change of state, key concepts such as conservation of matter or reversibility were omitted in the curriculum document, and explanations based on various aspects of particles were somewhat insufficient. The concept of matter is fundamental to chemistry, and we must recognize it as a concept that needs to be taught clearly. Implications for curriculum revision were discussed.

Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method (Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측)

  • Kang, Tae-Cheon;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

International Comparison of National Elementary Science Curriculum and Science Textbook on Introduction of Particulate Concept (물질의 입자적 관점 도입에 대한 초등과학 교육과정 및 교과서 국제 비교)

  • Sim, Byeongju;Yoon, Heesook
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.147-160
    • /
    • 2018
  • The purpose of this study is to compare the elementary science curriculum and textbooks of Korea, the United States, Japan, and Singapore to know how the contents on particulate concept of matter is introduced and expressed. In Korea, particulate concept of matter was adopted as a term for 'molecules' in the 3rd through 6th curriculum, and the term for 'particles' was adopted in the 2009 revised curriculum. In the United States, NGSS adopted the term 'particle' in fifth grade. Japan presented the concept of 'particle' as a core concept of matter in the commentary, and the expressions 'particles' were being introduced in the textbooks. But it did not cover particulate nature of matter at the elementary school level in Singapore. An analysis of elementary textbooks in Korea, the United States and Japan except Singapore showed particulate expressions in 'dissolution', 'state change of water', 'gas pressure and volume', 'combustion and extinguishment' units. Korean textbook was only being introduced in 'dissolution' and 'gas pressure and volume', but in the textbooks of Japan and the United States, water was expressed as particles in 'state change of water' unit. Discussion and implication on the introduction of particulate concept to elementary science curriculum and textbooks were suggested based on the results.

Characteristics of Particulate Matter Generated during the Operation of a Small Directly Fired Coffee Roaster (소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구)

  • Yu, Da Eun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.236-248
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the concentrations of particulate matter generated during coffee roasting and to study various factors affecting the concentrations. Methods: Differences in concentration levels were investigated based on various factors to understand the emission rates of particulate matter over time and to compare the mass and number concentrations according to their size. Sampling was performed in closed laboratories without the operation of air conditioning or ventilation. Optical Particle Sizer(OPS) was used as a measuring device. An OPS measures using a light-scattering method. Sampling was performed for sixty minutes at one-minute intervals. The background concentration was measured for about 30 minutes before starting of coffee roasting. The concentrations of particulate matter generated during coffee roasting were monitored until roasted coffee beans were removed from the roaster and cooled down. Several factors affecting the concentrations of particulate matter were investigated, which includes the origins of green beans, the roasting level, and the input amount of green beans. Results: The results of this study may be summarized as follows: 1) There was no difference in particulate matter concentration levels by the origin of the green beans, but a statistically significant difference in concentration levels by roasting level and the input amount of green beans; The higher the roasting level, the higher was the particulate matter concentration. The more green beans we put in the roaster, the higher were the concentrations; 2) The PM10 mass concentrations increased over time. The average concentration after roasting was higher than the average concentration during roasting; 3) In the distribution of mass and number concentration by particle diameter, the majority of particles was below 2.5 ㎛. Conclusions: Persons who work in roastery cafes can be exposed to high concentrations of particulate matter. Therefore, personal exposure and risk assessment should be conducted for roastery cafe workers.

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.