Browse > Article
http://dx.doi.org/10.5140/JASS.2016.33.1.63

e-Science Paradigm for Astroparticle Physics at KISTI  

Cho, Kihyeon (Korea Institute of Science and Technology Information)
Publication Information
Journal of Astronomy and Space Sciences / v.33, no.1, 2016 , pp. 63-67 More about this Journal
Abstract
The Korea Institute of Science and Technology Information (KISTI) has been studying the e-Science paradigm. With its successful application to particle physics, we consider the application of the paradigm to astroparticle physics. The Standard Model of particle physics is still not considered perfect even though the Higgs boson has recently been discovered. Astrophysical evidence shows that dark matter exists in the universe, hinting at new physics beyond the Standard Model. Therefore, there are efforts to search for dark matter candidates using direct detection, indirect detection, and collider detection. There are also efforts to build theoretical models for dark matter. Current astroparticle physics involves big investments in theories and computing along with experiments. The complexity of such an area of research is explained within the framework of the e-Science paradigm. The idea of the e-Science paradigm is to unify experiment, theory, and computing. The purpose is to study astroparticle physics anytime and anywhere. In this paper, an example of the application of the paradigm to astrophysics is presented.
Keywords
e-Science; astroparticle physics; dark matter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Papucci M, Hoeche S, Present and Future Computing Requirements for Theoretical Particle Physics, Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017, Rockville, MD, 27-28 Nov 2012.
2 Kim J, Cho K, A study on the optimization of finite volume effects of BK in lattice QCD by using the CUDA, J. Korean Phys. Soc. 67, 307-310 (2015). http://dx.doi.org/10.3938/jkps.67.307   DOI
3 Kim J, Kim HJ, Lee W, Jung C, Sharpe SR, Finite Volume Errors in BK, The 29th Internationl Symposium on Lattice Field Theory, Lake Tahoe, CA, 10-16 July (2011).
4 Kim J, Jung C, Kim HJ, Lee W, Sharpe SR, Finite volume effects in BK with improved staggered fermions, Phys. Rev. D 83, 117501 (2012). http://dx.doi.org/10.1103/PhysRevD.83.117501   DOI
5 Kobayashi M, Maskawa T, CP-Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49, 652-657 (1973). http://dx.doi.org/10.1143/PTP.49.652   DOI
6 Lin SC, Yen E, e-Science for High Energy Physics in Taiwan and Asia, J. Korean Phys. Soc. 55, 2035 (2009). http://dx.doi.org/10.3938/jkps.55.2035   DOI
7 Sjostranda T, Ask S, Christiansen JR, Corke R, Desai N, et al., An Intrudoction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159-177 (2014). http://dx.doi.org/10.1016/j.cpc.2015.01.024   DOI
8 Wilson KG, Confinement of quarks, Phys. Rev. D 10, 2445 (1974). http://dx.doi.org/10.1103/PhysRevD.10.2445   DOI
9 Cho K, Kim H, Heavy Flavor Physics through e-Science, J. Korean Phys. Soc. 55, 2045 (2009). http://dx.doi.org/10.3938/jkps.55.2045   DOI
10 Cho K, Nam S, Right-handed current contributions in B→Kπ decays, Phys. Rev. D 88, 035012 (2013). http://dx.doi.org/10.1103/PhysRevD.88.035012   DOI
11 Cho K, Kim J, Nam S, Collider physics based on e-Science paradigm of experiment–computing–theory, Comput. Phys. Commun. 182, 1756 (2011). http://dx.doi.org/10.1016/j.cpc.2010.12.019   DOI
12 Hey T, e-Science and Cyberinfrastructure, The 20th International CODATA Conference, Beijing, China, 22-25 Oct 2006.
13 Cho K, Kim J, Kim J, Research and development of the evolving architecture for beyond the Standard Model, 21st International Conference on Computing in High Energy and Nuclear Physics. 664, 072011 (2015). http://dx.doi.org/10.1088/1742-6596/664/7/072011
14 Eric C, Fuks B, Serret G, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184, 222-256 (2013). http://dx.doi.org/10.1016/j.cpc.2012.09.009   DOI
15 Essig R, Mardon J, Papucci M, Volansky T, Zhong YM, et al., Constraining Light Dark Matter with Low-Energy e+e- Colliders, J. High Energy Phys. 2013, 167 (2013). http://dx.doi.org/10.1007/JHEP11(2013)167   DOI
16 Jaegle I, Adachi I, Aihara H, Al Said S, Asner DM, et al., Search for the Dark Photon and the Dark Higgs Boson at Belle, Phys. Rev. Lett. 114, 211801 (2015). http://dx.doi.org/10.1103/PhysRevLett.114.211801   DOI
17 Jeong YS, KIM CS, Lee HS, Constraints on the U(1)L gauge boson in a wide mass range, eprint arXiv:1512.03179 (2015).
18 Antcheva I, Ballintjin M, Bellenot B, Biskup M, Brun R, et al., ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180, 2499-2512 (2009). http://dx.doi.org/10.1016/j.cpc.2009.08.005   DOI
19 Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al., Geant4—a simulation toolkit, Nucl. Instr. Meth. Phys. Res. A 506, 250-303 (2003). http://dx.doi.org/10.1016/S0168- 9002(03)01368-8   DOI
20 Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 2014, 79 (2014). http://dx.doi.org/10.1007/JHEP07(2014)079   DOI
21 Bae T, Jang YC, Jung C, Kim HJ, Kim J, et al., Kaon B Parameter from Improved Staggered Fermions in Nf = 2+1 QCD, Phys. Rev. Lett. 109, 041601 (2012). http://dx.doi.org/10.1103/PhysRevLett.109.041601   DOI
22 Batell B, Pospelov M, Ritz A, Probing a secluded U(1) at B factories, Phys. Rev. D 79, 115008 (2009). http://dx.doi.org/10.1103/PhysRevD.79.115008   DOI
23 Bertone G, Hooper D, Silk J, Particle dark matter: evidence, candidates and constraints, Phys. Rep. 405, 279 (2005). http://dx.doi.org/10.1016/j.physrep.2004.08.031   DOI
24 Cho K, A test of the interoperability of grid middleware for the Korean High Energy Physics Data Grid system, Int. J. Comput. Sci. Netw. Secur. 7, 49-54 (2007).
25 Cho S, Monte Carlo Introduction, The 2nd Geant4 Tutorial, Daejeon, Korea, 21 Sep 2012.