• 제목/요약/키워드: Particle Mass

검색결과 952건 처리시간 0.023초

1994년 6월 서울지역 시정장애의 측정 및 분석 (Measurement and Analysis of Visibility lmpairment during June, 1994 in Seoul)

  • 백남준;이종훈;김용표;문길주
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.407-419
    • /
    • 1996
  • Characteristics of visual air quality in Seoul have been investigated between June 13 and 21, 1994. Optical properties (extinction coefficient and particle scattering coefficient), meteorological parameters (relative humidity, temperature, wind speed, wind direction, and cloud cover), particle characteristics (mass size distribution, components) were measured and analyzed. During measurement periods, northwest wind with less than 2m/sec of wind speed deteriorates visibility. Effects of relative humidity are though to be not a direct factor which influence to visibility through the size change due to hygroscopic species in aerosol. During the smoggy period both the aerosol mass concentration and fine particle fraction of the size distribution are increased compared to the clear period. Sulfate, organic carbon, and elemental carbon in aerosol are the major species in determining the occurrence and severity of a smog in Seoul.

  • PDF

모래에 함침시킨 알콜의 연소특성 (Combustion Characteristics of Immobilized Alcohols in Sands)

  • 우인성
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.137-142
    • /
    • 1996
  • Combustion characteristics of immobilized methyl, ethyl and propyl alcohols on sands were studied. Experiments were performed by burning methyl, ethyl and propyl alcohols Immobilized on sands (particle size 0.1~5mm) and ceramic balls(particle size 5mm) to measure mass burning rate, height burning rate and combustion temperature. It was concluded that the longer time from ignition to extinguishment was resulted from the larger particle size of sands and the smaller size of sands exhibited the higher mass burning rate. Of alcohols tested the relative magnitude of facilitation of combustion was methyl>ethyl>propyl alcohol. Combustion temperature of alcohols, without regard to the types of alcohols, was not increased with smaller sands. However, with larger sands, combustion temperatare of alcohols was increased with the larger particle.

  • PDF

고온 유동장 내 석탄 단입자 연소과정의 특성화를 위한 수치적 연구 (A numerical model for combustion process of single coal particle in hot gas)

  • 뉴셔양;이후경;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.301-304
    • /
    • 2015
  • With the experiment observation of single particle combustion, this model is built for the numerical analysis of the process. It's about the single coal particle combustion process under different conditions with reasonable assumptions. The model can express the mass, radius, density, temperature changing with different particle sizes, oxygen concentration and gas temperature. It also includes the flame sizes change in different condition and the diffusion of each species. The result shows the characters of the combustion.

  • PDF

실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정 (Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments)

  • 지준호;배귀남
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.39-50
    • /
    • 2013
  • SMPS, APS, ELPI는 실시간으로 대기 중 입자상 물질을 측정할 수 있는 장비로 많은 연구자들에 의해 사용되고 있다. 하지만 측정장비의 특성과 입자 분류 특성에 대한 충분한 이해가 없다면, 단순히 장비에 제공된 소프트웨어의 계산 결과를 여과 없이 그대로 사용할 수밖에 없다. 본 연구에서는 SMPS, APS, ELPI의 측정 메커니즘을 간단히 정리하였고, 전기적 이동도로 입자를 분리하는 SMPS와 공기역학적 거동을 이용하는 APS를 함께 사용하여 입자의 크기분포를 측정할 때 발생할 수 있는 문제점을 고찰하였다. 크기분포 측정결과를 이용해서 무게 농도를 환산하는 과정에서 대기 입자의 입경에 따른 밀도 정보를 제공하는 것이 매우 중요하다는 것을 보였다. 특히, APS 측정결과를 이용하는 경우 무게 농도의 추정 결과가 크게 영향을 받았다. ELPI의 경우 입자 밀도를 정확히 설정하지 않으면 입자의 수 농도에 오차가 크게 발생할 수 있으므로, 정확한 밀도를 설정하는 것이 중요했다. 반면에 ELPI로 대기 중입자상 물질의 무게 농도를 추정하는 경우 밀도가 실제와 다르게 설정되더라도 공기역학적 입경으로 나타내면 총 무게 농도는 수 농도에 비해 상대적으로 영향이 적었다. 향후 SMPS와 APS를 이용하여 시간에 따른 크기 분포 변화와 연간 수 농도와 무게 농도의 변화 추이를 측정하는 연구가 필요하다. 특히, 국내 대기 중입자의 입경에 따른 평균 밀도 혹은 유효 밀도를 측정하여 크기분포와 총 수 농도 혹은 PM2.5나 PM1에 해당하는 무게 농도를 정확하게 계산할 수 있는 데이터 환산 프로그램의 개발도 필요하다. 이와 같은 연구로 시간경과에 따라 변화하는 대기 입자의 오염원에 대한 영향을 규명하는 기초 자료를 얻을 수 있을 것이다.

Chemical Composition of the Size-resolved Particles in Buk-Ak Tunnel

  • Ma, Chang-Jin;Hwang, Kyung-Chul;Kang, Gong-Unn;Tohno, Susumu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E2호
    • /
    • pp.53-59
    • /
    • 2004
  • The roadway tunnels in urban areas give rise to problems such as a localized air pollution. Here, we report the results of a case study of an urban roadway tunnel measurement. The size-resolved particle sampling was carried out with a two 2-stage filter pack samplers and an Andersen impactor sampler at the center of Buk-Ak tunnel in November 2001. Particle Induced X-ray Emission (PIXE) was applied to determine the elemental composition of size-resolved particles divided into soluble and insoluble fractions. The Thermal/Optical Reflectance (TOR$^{(R)}$) method was also employed in analyzing of elemental carbon (EC) and organic carbon (OC). Mass concentrations of fine (< 1.2 ${\mu}{\textrm}{m}$) and coarse (> 1.2 ${\mu}{\textrm}{m}$) particles are 165 and 48 $\mu\textrm{g}$ m$^{-3}$ , respectively. Total elemental mass concentration (the sum of insoluble coarse, soluble coarse, insoluble fine, and soluble fine) is found to be 24$\mu\textrm{g}$ m$^{-3}$ and comprises only 11 % of total particle mass concentration. The concentrations of EC, OC, and mass show the clear dependency on particle size with the maximum between 0.1 and 0.43 ${\mu}{\textrm}{m}$ aerodynamic diameters. Total carbon (sum of EC and OC) accounts for approximately 70% of mass concentration.n.

서해안 안흥에서 관측된 에어로솔의 농도 변화 및 크기분포 특성 (Characteristics of Aerosol Mass Concentrations and Size Distribution Measured at Anheung, Korea)

  • 이권호;이규태;김정호;문관호;안준모
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.677-686
    • /
    • 2018
  • An intensive measurement was conducted to study the mass and number concentrations of atmospheric aerosols in Anheung ($36.679^{\circ}N$, $126.186^{\circ}E$), the west coastal measurement site of Korea during December 2017~April 2018. To evaluate relationships between the aerosols and meteorological parameters, comparisons of Optical Particle Counter (OPC) measured data and Auto Weather System (AWS) data were performed. Measured PM mass concentrations are $PM_{10}=42.814{\pm}30.103{\mu}g/m^3$, $PM_{2.5}=29.674{\pm}25.063{\mu}g/m^3$, $PM_1=28.958{\pm}24.658{\mu}g/m^3$, respectively. The PM ratios showed that the $PM_{10}$ concentrations contained about 67.8% of $PM_{2.5}$, while most part of $PM_{2.5}$ was $PM_1$ (about 97.1%). Timely collocation with AWS data were performed, exploring relations with the PM concentrations. PM concentrations can be explained by wind direction and relative humidity conditions. The significant reductions of fine particles in mass and number concentrations may attribute to actions on particle growth and wet removal. In these results, we suppose that the aerosol concentrations and size distributions are affected by inflow direction and air mass sources from the origin.

타코나이트 광산 공정에서의 실시간 질량측정기기와 실시간 수농도의 환산에 의한 질량농도와의 연관성 (Relationships between a Calculated Mass Concentration and a Measured Concentration of PM2.5 and Respirable Particle Matter Sampling Direct-Reading Instruments in Taconite Mines)

  • 정은교;장재길;송세욱;김정호
    • 한국산업보건학회지
    • /
    • 제24권1호
    • /
    • pp.65-73
    • /
    • 2014
  • Objectives: The purposes of this study are to investigate workers' exposures to respirable particles generated in taconite mines and to compare two metric methods for mass concentrations using direct-reading instruments. Methods: Air monitorings were conducted at six mines where subjects have been exposed primarily to particulate matters in crushing, concentrating, and pelletizing processes. Air samples were collected during 4 hours of the entire work shift for similarly exposure groups(SEGs) of nine jobs(N=37). Following instruments were employed to evaluate the workplace: a nanoparticle aerosol monitor(particle size range; 10-1000 nm, unit: ${\mu}m^2/cc$, Model 9000, TSI Inc.); DustTrak air monitors($PM_{10}$, $PM_{2.5}$, unit: $mg/m^3$, Model 8520, TSI Inc.); a condensation particle counter(size range; 20-1000 nm, unit: #/cc, P-Trak 8525, TSI Inc.); and an optical particle counter(particle number by size range $0.3-25{\mu}m$, unit: #/cc, Aerotrak 9306, TSI Inc.). Results: The highest airborne concentration among SEGs was for furnace operator followed by pelletizing maintenance workers in number of particle and surface area, but not in mass concentrations. The geometric means of $PM_{2.5}$ by the DustTrak and the Ptrak/Aerotrak were $0.04{\mu}m$(GSD 2.52) and $0.07{\mu}m$(GSD 2.60), respectively. Also, the geometric means of RPM by the DustTrak and the Ptrak/Aerotrak were $0.16{\mu}m$(GSD 2.24) and $0.32{\mu}m$(GSD 3.24), respectively. The Pearson correlation coefficient for DustTrak $PM_{2.5}$ and Ptrak/Aerotrak $PM_{2.5}$ was 0.56, and that of DustTrak RPM and Ptrak/Aerotrak RPM was 0.65, indicating a moderate positive association between the two sampling methods. Surface area and number concentration were highly correlated($R^2$ = 0.80), while $PM_{2.5}$ and RPM were also statistically correlated each other($R^2$ = 0.79). Conclusions: The results suggest that it is possible to measure airborne particulates by mass concentrations or particle number concentrations using real-time instruments instead of using the DustTrak Aerosol monitor that monitor mass concentrations only.

나노크기의 매연입자에 대한 LII의 열-물질 전달 모델에 관한 수치적 연구 (A Numerical Study of Heat and Mass Transfer Model of LII for Nanoscale Soot Particles)

  • 김규보;심재영;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.596-603
    • /
    • 2007
  • As increasing interest for soot emission. etc in combustion systems, various studies are being carried out for the reduction and measurement techniques of soot. Especially, laser induced incandescence is the useful measurement technique which has distinguished spatial and temporal resolution for primary particle size, volume fraction and aggregated particle size etc. Time resolved laser induced incandescence is the technique for measuring primary particle size that is decided to solve the signal decay rate which is related to the cooling behavior of heated particle by pulsed laser. The cooling behavior of heated particle is able to represent the heat and mass transfer model which are involved constants of soot property for surround gas temperature on the our previous work. In this study, it is applied to the time-dependence thermodynamic properties for soot temperature instead of constants of soot property for surround gas temperature and compared two different model results.

Measurement of the Particle Current Changes Associated with the Flatness of Deflector Mesh Surface in Particle Beam Mass Spectrometer System

  • Kim, Dongbin;Kim, TaeWan;Jin, Yinhua;Mun, Jihun;Lim, In-Tae;Kim, Ju-Hwang;Kim, Taesung;Kang, Sang-Woo
    • Applied Science and Convergence Technology
    • /
    • 제25권2호
    • /
    • pp.25-27
    • /
    • 2016
  • The surface flatness of metal meshes in a deflector of particle beam mass spectrometer (PBMS) required ideally flat, and this can specify the particle trajectories which goes through the detector. In this research, charged particle current was measured using the different surface roughness deflectors. NaCl particles were generated monodispersed in its size by using differential mobility analyzer and the whole processes were followed the way calibrating PBMS. The results indicate that the mesh surface morphology in the deflector can affect to the particle size and the concentration errors, and sensitivity of PBMS.

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.