DOI QR코드

DOI QR Code

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments

실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정

  • Ji, Jun-Ho (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Bae, Gwi-Nam (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
  • 지준호 (한국과학기술연구원 환경복지연구단) ;
  • 배귀남 (한국과학기술연구원 환경복지연구단)
  • Published : 2013.06.30

Abstract

Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.

SMPS, APS, ELPI는 실시간으로 대기 중 입자상 물질을 측정할 수 있는 장비로 많은 연구자들에 의해 사용되고 있다. 하지만 측정장비의 특성과 입자 분류 특성에 대한 충분한 이해가 없다면, 단순히 장비에 제공된 소프트웨어의 계산 결과를 여과 없이 그대로 사용할 수밖에 없다. 본 연구에서는 SMPS, APS, ELPI의 측정 메커니즘을 간단히 정리하였고, 전기적 이동도로 입자를 분리하는 SMPS와 공기역학적 거동을 이용하는 APS를 함께 사용하여 입자의 크기분포를 측정할 때 발생할 수 있는 문제점을 고찰하였다. 크기분포 측정결과를 이용해서 무게 농도를 환산하는 과정에서 대기 입자의 입경에 따른 밀도 정보를 제공하는 것이 매우 중요하다는 것을 보였다. 특히, APS 측정결과를 이용하는 경우 무게 농도의 추정 결과가 크게 영향을 받았다. ELPI의 경우 입자 밀도를 정확히 설정하지 않으면 입자의 수 농도에 오차가 크게 발생할 수 있으므로, 정확한 밀도를 설정하는 것이 중요했다. 반면에 ELPI로 대기 중입자상 물질의 무게 농도를 추정하는 경우 밀도가 실제와 다르게 설정되더라도 공기역학적 입경으로 나타내면 총 무게 농도는 수 농도에 비해 상대적으로 영향이 적었다. 향후 SMPS와 APS를 이용하여 시간에 따른 크기 분포 변화와 연간 수 농도와 무게 농도의 변화 추이를 측정하는 연구가 필요하다. 특히, 국내 대기 중입자의 입경에 따른 평균 밀도 혹은 유효 밀도를 측정하여 크기분포와 총 수 농도 혹은 PM2.5나 PM1에 해당하는 무게 농도를 정확하게 계산할 수 있는 데이터 환산 프로그램의 개발도 필요하다. 이와 같은 연구로 시간경과에 따라 변화하는 대기 입자의 오염원에 대한 영향을 규명하는 기초 자료를 얻을 수 있을 것이다.

Keywords

References

  1. Armendariz, A.J. and Leith, D. (2002). Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320, Journal of Aerosol Science, 33(1), 133-148. https://doi.org/10.1016/S0021-8502(01)00152-5
  2. Ahlvik, P., Ntziachristos, L., Keskinen, J., and Virtanen, A. (1998). Real time measurements of diesel particle size distribution with an electrical low pressure impactor, SAE Technical Paper 980410.
  3. Babich, P., Davey, M., Allen, G., and Koutrakis, P. (2000). Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven US cities, Journal of the Air and Waste Management Association, 50, 1095-1105. https://doi.org/10.1080/10473289.2000.10464152
  4. Bae, G.N., Kim, M.C., Lee, S.B., Song, K.B., Jin, H.C., and Moon, K.C. (2003a). Design and performance evaluation of the KIST indoor smog chamber, Journal of Korean Society for Atmospheric Environment, 19(4), 437-449.
  5. Bae, G.N., Kim, M.C., Lim, D.Y., Moon, K.C., and Baik, N.J. (2003b). Characteristics of urban aerosol number size distribution in Seoul during the winter season of 2001, 19(2), 167-177.
  6. Dockery, D., Pope, C.A., Xu, X., Spengler, J., Ware, J., Fay, M., Ferris, B., and Speizer, F. (1993). An association between air pollution and mortality in six U.S. cities, New England Journal of Medicine, 329, 1753-1759. https://doi.org/10.1056/NEJM199312093292401
  7. van Gulijk, C., Schouten, J.M., Marijnissen, M., Makkee, M., and Moulijn, J.A. (2001). Restriction for the ELPI in diesel particulate measurements, Journal of Aerosol Science, 32, 1117-1130. https://doi.org/10.1016/S0021-8502(01)00045-3
  8. Hoppel, W.A. (1978). Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, Journal of Aerosol Science, 9, 41-54. https://doi.org/10.1016/0021-8502(78)90062-9
  9. Ji, J.H., Bae, G.N., and Hwang, J. (2003a). Nano particle charging characteristics of aerosol charge neutralizers, Transactions of the KSME B, 27(10), 1489-1497.
  10. Ji, J.H., Bae, G.N., and Hwang, J. (2003b). Effect of performance of aerosol charge neutralizers on the measurement of highly charged particles using an SMPS, Transactions of the KSME B, 27(10), 1498-1507.
  11. Ji, J.H., Bae, G.N., and Hwang, J. (2004a). Design and performance evaluation of a Faraday cage and an aerosol charger, Transactions of the KSME B, 28(3), 315-323.
  12. Ji, J.H., Cho, M.H., Bae, G.N., and Hwang, J. (2004b). Design and performance evaluation of a low pressure impactor for sampling submicron aerosols, Transactions of the KSME B, 28(3), 349-358.
  13. Karg, E., Ferron, G.A., and Heyder, J. (2003). Estimating the density of aerosol particles, Abstracts of the European Aerosol Conference 2003, S1251-S1252.
  14. Kelly, W.P. and McMurry, P.H. (1992). Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosols, Aerosol Science and Technology, 17, 199-212. https://doi.org/10.1080/02786829208959571
  15. Kim, Y.P., Bae, G.N., Ji, J.H., Jin, H.C., and Moon, K.C. (1999). Aerosol size distribution and composition at Kosan, Cheju Island: Measurements in April 1998, Journal of Korean Society for Atmospheric Environment, 15(5), 677-685.
  16. Knutson, E.O. and Whitby, K.T. (1975). Aerosol classification by electrical mobility: apparatus, theory and applications, Journal of Aerosol Science, 6, 443-451. https://doi.org/10.1016/0021-8502(75)90060-9
  17. Laitinen, A., Hautanen, J., Keskinen, J., Moisio, M., Marjamaeki, M., Elsila, A., and Nieminen, K. (1996). Real time measurement of the size distribution of urban air aerosols with electrical low pressure impactor, Journal of Aerosol Science, 27 (Suppl. 1), S299-S300. https://doi.org/10.1016/0021-8502(96)00222-4
  18. Maricq, M.M., Podsiadlik, D.H., and Chase, R.E. (2000). Size distribution of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurement, Aerosol Science and Technology, 43, 239-260.
  19. Marjamaeki, M., Keskinen, J., Chen, D.R., and Pui, D.Y.H. (2000). Performance evaluation of the electrical low-pressure impactor (ELPI), Journal of Aerosol Science, 31(2), 249-261. https://doi.org/10.1016/S0021-8502(99)00052-X
  20. Park, J.H and Choi, K.C. (1997). Characterization of chemical composition and size distribution of atmospheric aerosols by low-pressure impactor, Journal of Korea Air Pollution Research Association, 13(6), 475-486.
  21. Ristimaeki, J., Virtanen, A., Marjamaeki, M., Rostedt, A., and Keskinen, J. (2002). On-line measurement of size distribution and effective density of submicron aerosol particles, Journal of Aerosol Science, 33, 1541-1557. https://doi.org/10.1016/S0021-8502(02)00106-4
  22. Schleicher, B., Kuenzei, S., and Burtscher, H. (1995). In situ measurement of size and density of submicron aerosol particles, Journal of Applied Physics, 78(7), 4416-4422. https://doi.org/10.1063/1.359849
  23. Shen, S., Jaques, P.A., Zhu, Y., Geller, M.D., and Sioutas, C. (2002). Evaluation of the SMPSAPS system as a continuous monitor for measuring $PM_{2.5}$, $PM_{10}$ and coarse ($PM_{2.5-10}$) concentrations, Atmospheric Environment, 36, 3939-3950. https://doi.org/10.1016/S1352-2310(02)00330-8
  24. Shi, J.P., Khan, A.A., and Harrison, R.M., (1999). Measurement of ultrafine particle concentration and size distribution in the urban atmosphere, Science of the Total Environment, 235, 51-64. https://doi.org/10.1016/S0048-9697(99)00189-8
  25. Sioutas, C., Abt, E., Wolfson, J.M., and Koutrakis, P. (1999). Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer, Aerosol Science and Technology, 30, 84-92. https://doi.org/10.1080/027868299304903
  26. Stein, S.W., Turpin, B.J., Cai, X., Huang, P.F., and McMurry, P.H. (1994). Measurement of relative humidity dependent bounce and density for atmospheric particles using the DMA-impactor technique, Atmospheric Environment, 28, 1739-1746. https://doi.org/10.1016/1352-2310(94)90136-8
  27. Schwartz, J. and Dockery, D.W. (1992a). Increased mortality in Philadelphia associated with daily air pollution concentrations, American Review of Respiratory Disease, 145, 600-604. https://doi.org/10.1164/ajrccm/145.3.600
  28. Schwartz, J. and Dockery, D.W. (1992b). Particulate air pollution and daily mortality in Steubenville, Ohio, American Review of Respiratory Disease, 135, 12-19.
  29. Temesi, D., Molnar, A., Meszaros, E., and Feczko, T. (2003). Seasonal and diurnal variation in the size distribution of fine carbonaceous particles over rural Hungary, Atmospheric Environment, 37, 139-146. https://doi.org/10.1016/S1352-2310(02)00773-2
  30. Temesi, D., Molnar, A., Meszaros, E., Feczko, T., Gelencser, A., Kiss, G., and Krivacsy, Z. (2001). Size resolved chemical mass balance of aerosol particles over rural Hungary, Atmospheric Environment, 35, 4347-4355. https://doi.org/10.1016/S1352-2310(01)00233-3