Browse > Article
http://dx.doi.org/10.11629/jpaar.2013.9.2.039

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments  

Ji, Jun-Ho (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Bae, Gwi-Nam (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
Publication Information
Particle and aerosol research / v.9, no.2, 2013 , pp. 39-50 More about this Journal
Abstract
Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.
Keywords
Size distribution; Mass concentration; SMPS; APS; ELPI; Particle density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maricq, M.M., Podsiadlik, D.H., and Chase, R.E. (2000). Size distribution of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurement, Aerosol Science and Technology, 43, 239-260.
2 Marjamaeki, M., Keskinen, J., Chen, D.R., and Pui, D.Y.H. (2000). Performance evaluation of the electrical low-pressure impactor (ELPI), Journal of Aerosol Science, 31(2), 249-261.   DOI
3 Park, J.H and Choi, K.C. (1997). Characterization of chemical composition and size distribution of atmospheric aerosols by low-pressure impactor, Journal of Korea Air Pollution Research Association, 13(6), 475-486.
4 Ristimaeki, J., Virtanen, A., Marjamaeki, M., Rostedt, A., and Keskinen, J. (2002). On-line measurement of size distribution and effective density of submicron aerosol particles, Journal of Aerosol Science, 33, 1541-1557.   DOI
5 Sioutas, C., Abt, E., Wolfson, J.M., and Koutrakis, P. (1999). Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer, Aerosol Science and Technology, 30, 84-92.   DOI
6 Schleicher, B., Kuenzei, S., and Burtscher, H. (1995). In situ measurement of size and density of submicron aerosol particles, Journal of Applied Physics, 78(7), 4416-4422.   DOI
7 Shen, S., Jaques, P.A., Zhu, Y., Geller, M.D., and Sioutas, C. (2002). Evaluation of the SMPSAPS system as a continuous monitor for measuring $PM_{2.5}$, $PM_{10}$ and coarse ($PM_{2.5-10}$) concentrations, Atmospheric Environment, 36, 3939-3950.   DOI
8 Shi, J.P., Khan, A.A., and Harrison, R.M., (1999). Measurement of ultrafine particle concentration and size distribution in the urban atmosphere, Science of the Total Environment, 235, 51-64.   DOI
9 Stein, S.W., Turpin, B.J., Cai, X., Huang, P.F., and McMurry, P.H. (1994). Measurement of relative humidity dependent bounce and density for atmospheric particles using the DMA-impactor technique, Atmospheric Environment, 28, 1739-1746.   DOI
10 Armendariz, A.J. and Leith, D. (2002). Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320, Journal of Aerosol Science, 33(1), 133-148.   DOI
11 Bae, G.N., Kim, M.C., Lee, S.B., Song, K.B., Jin, H.C., and Moon, K.C. (2003a). Design and performance evaluation of the KIST indoor smog chamber, Journal of Korean Society for Atmospheric Environment, 19(4), 437-449.
12 Ahlvik, P., Ntziachristos, L., Keskinen, J., and Virtanen, A. (1998). Real time measurements of diesel particle size distribution with an electrical low pressure impactor, SAE Technical Paper 980410.
13 Babich, P., Davey, M., Allen, G., and Koutrakis, P. (2000). Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven US cities, Journal of the Air and Waste Management Association, 50, 1095-1105.   DOI
14 Bae, G.N., Kim, M.C., Lim, D.Y., Moon, K.C., and Baik, N.J. (2003b). Characteristics of urban aerosol number size distribution in Seoul during the winter season of 2001, 19(2), 167-177.
15 Dockery, D., Pope, C.A., Xu, X., Spengler, J., Ware, J., Fay, M., Ferris, B., and Speizer, F. (1993). An association between air pollution and mortality in six U.S. cities, New England Journal of Medicine, 329, 1753-1759.   DOI
16 van Gulijk, C., Schouten, J.M., Marijnissen, M., Makkee, M., and Moulijn, J.A. (2001). Restriction for the ELPI in diesel particulate measurements, Journal of Aerosol Science, 32, 1117-1130.   DOI
17 Temesi, D., Molnar, A., Meszaros, E., Feczko, T., Gelencser, A., Kiss, G., and Krivacsy, Z. (2001). Size resolved chemical mass balance of aerosol particles over rural Hungary, Atmospheric Environment, 35, 4347-4355.   DOI
18 Schwartz, J. and Dockery, D.W. (1992a). Increased mortality in Philadelphia associated with daily air pollution concentrations, American Review of Respiratory Disease, 145, 600-604.   DOI
19 Schwartz, J. and Dockery, D.W. (1992b). Particulate air pollution and daily mortality in Steubenville, Ohio, American Review of Respiratory Disease, 135, 12-19.
20 Temesi, D., Molnar, A., Meszaros, E., and Feczko, T. (2003). Seasonal and diurnal variation in the size distribution of fine carbonaceous particles over rural Hungary, Atmospheric Environment, 37, 139-146.   DOI
21 Ji, J.H., Bae, G.N., and Hwang, J. (2004a). Design and performance evaluation of a Faraday cage and an aerosol charger, Transactions of the KSME B, 28(3), 315-323.
22 Hoppel, W.A. (1978). Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, Journal of Aerosol Science, 9, 41-54.   DOI
23 Ji, J.H., Bae, G.N., and Hwang, J. (2003a). Nano particle charging characteristics of aerosol charge neutralizers, Transactions of the KSME B, 27(10), 1489-1497.
24 Ji, J.H., Bae, G.N., and Hwang, J. (2003b). Effect of performance of aerosol charge neutralizers on the measurement of highly charged particles using an SMPS, Transactions of the KSME B, 27(10), 1498-1507.
25 Kim, Y.P., Bae, G.N., Ji, J.H., Jin, H.C., and Moon, K.C. (1999). Aerosol size distribution and composition at Kosan, Cheju Island: Measurements in April 1998, Journal of Korean Society for Atmospheric Environment, 15(5), 677-685.
26 Ji, J.H., Cho, M.H., Bae, G.N., and Hwang, J. (2004b). Design and performance evaluation of a low pressure impactor for sampling submicron aerosols, Transactions of the KSME B, 28(3), 349-358.
27 Karg, E., Ferron, G.A., and Heyder, J. (2003). Estimating the density of aerosol particles, Abstracts of the European Aerosol Conference 2003, S1251-S1252.
28 Kelly, W.P. and McMurry, P.H. (1992). Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosols, Aerosol Science and Technology, 17, 199-212.   DOI
29 Knutson, E.O. and Whitby, K.T. (1975). Aerosol classification by electrical mobility: apparatus, theory and applications, Journal of Aerosol Science, 6, 443-451.   DOI
30 Laitinen, A., Hautanen, J., Keskinen, J., Moisio, M., Marjamaeki, M., Elsila, A., and Nieminen, K. (1996). Real time measurement of the size distribution of urban air aerosols with electrical low pressure impactor, Journal of Aerosol Science, 27 (Suppl. 1), S299-S300.   DOI