• Title/Summary/Keyword: Particle Image velocimetry

Search Result 642, Processing Time 0.021 seconds

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

The PIV Measurements on the Respiratory Gas Flow in the Human Airway (호흡기 내 주기적 공기유동에 대한 PIV 계측)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1051-1056
    • /
    • 2006
  • The mean and RMS velocity field of the respiratory gas flow in the human airway was studied experimentally by particle image velocimetry (PIV). Some researchers investigated the airflow for the mouth breathing case both experimentally and numerically. But it is very rare to investigate the airflow of nose breathing in a whole airway due to its geometric complexity. We established the procedure to create a transparent rectangular box containing a model of the human airway for PIV measurement by combination of the RP and the curing of clear silicone. We extend this to make a whole airway including nasal cavities, larynx, trachea, and 2 generations of bronchi. The CBC algorithm with window offset (64 $\times$ 64 to 32 $\times$ 32) is used for vector searching in PIV analysis. The phase averaged mean and RMS velocity distributions in Sagittal and coronal planes are obtained for 7 phases in a respiratory period. Some physiologic conjectures are obtained. The main stream went through the backside of larynx and trachea in inspiration and the frontal side in expiration. There exist vortical motions in inspiration, but no prominent one in expiration.

PIV Measurement of Circular Cylinder Wake Using Vortex Tracking Phase-Average Technique (와추적 위상평균 기법을 이용한 원주후류의 PIV측정)

  • Kim, Gyeong-Cheon;Yun, Sang-Yeol;Kim, Sang-Gi;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.915-922
    • /
    • 2001
  • A new phase-average technique using instantaneous velocity fields obtained by a PIV method has been developed. The technique tracks vorticity centers and estimates the value of circulation for a chosen domain. The locations of vortex-centers and the magnitudes of circulation are matched together then showing a sine wave feature due to the periodic vortex shedding from the circular cylinder. Ensemble averaged and phase averaged velocity fields are successfully measured for the circular cylinder wake where Reynolds number is 3900 based on free stream velocity and cylinder diameter. The convection velocities of the vortices center and the vortex shedding frequency were measured by a single hot-wire probe.

A Study on Flow Characteristics with Ultrasonic Forcing in a Coaxial Circular Pipe by PIV Measurement (동심원관내에서 초음파가 가진된 유동특성의 PIV계측에 의한 연구)

  • Koo, J.H.;Park, Y.H.;Choi, W.C.;Song, M.G.;Ju, E.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.639-644
    • /
    • 2000
  • An experiment on the enhancement of turbulent flow with ultrasonic forcing was carried out by using PIV measurement in a coaxial circular pipe which could offer characteristics of the turbulence flow plentifully through its jet. A large transparent acryl tank and a coaxial circular pipe nozzle were made for the above research. city water of $25^{\circ}C$ was selected as an experimental liquid and the front flow field of the coaxial circular pipe was divided vertically as 3 measuring regions to observe characteristics of flow phenomena. characteristics of fluid flow such as velocity vector distribution, kinetic energy, turbulent intensity and etc. were visualized, observed, examined and considered at 5 kinds of Re No. such as $Re=1{\times}10^3,\;2{\times}10^3,\;3{\times}10^3,\;5{\times}10^3,\;1{\times}10^4$. In result it was proved that ultrasonic vibration affected the enhancement of turbulent flow.

  • PDF

Development of X-ray PIV Technique and Its Applications (X-ray PIV 기법의 개발과 적용연구)

  • Lee Sang Joon;Kim Guk Bae;Kim Seok;Kim Yang-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed fur measuring quantitative information on flows inside opaque conduits and/or opaque-fluid flows. To check the performance of the x-ray PIV technique developed, it was applied to a liquid flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, the refraction-based edge enhancement mechanism was employed with seeding detectable tracer particles. The amassed velocity field data obtained were in a reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to get velocity fields of blood flow and to measure size and velocity of micro-bubbles simultaneously, and to visualize the water refilling process in bamboo leaves. The x-ray PIV was found to be a powerful transmission-type flow imaging technique fur measuring quantitative information of flows inside opaque objects and various opaque-fluid flows.

  • PDF

Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park Young Soo;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

An Experimental Study on the Mixing Characteristics in a Basket Mill Using PIV/LIF Method (PIV/LIF를 이용한 Basket Mill 내부의 유동특성에 관한 실험적 연구)

  • Kim Hyun Dong;Yoon Sang Youl;Jeong Eun Ho;Ryu Seung Gyu;Kim Kyung Chun;Kim Joongel;Yoo Dal Hyun;Yang Si Young
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.56-59
    • /
    • 2004
  • An experimental study has performed to identify the mixing characteristics of basket mill by using PIV and LIF techniques. The velocity fields were measured at three sectors for each two types of basket mill model and various impeller speed. To verify the results of velocity field measurement and the concentration field, LIF measurement also was performed for three cases. There was an inactive region and a descending flow to the bottom of basket mill at the original model. But when the impeller type and the guide shape were changed, internal flow structure was improved suitably for mixing and dispersion. The improvement result in increment of inflow flow rate at the basket entrance about $10\%$.

  • PDF

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF

Design of Optimal Vane Control for Ceiling Type Indoor Unit by PIV measurements (천장형 실내기의 기류 가시화를 통한 최적 제어 설계)

  • Sung Jaeyong;An Kwang Hyup;Lee Gi Seop;Choi Ho Seon;Park Seung-Chul;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.533-536
    • /
    • 2002
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated using a PIV(particle image velocimetry) system For the PIV measurements, an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number, which is generally used in case that the forced convection has the similar magnitude as the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, the experimental results show that it should be less than $30^{\circ}$ to avoid re-suction flows which decrease the performance of the air-conditioner. At the vane angle of $30^{\circ}$, applying open/close control gives nae to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for the thermal comfort.

  • PDF