• Title/Summary/Keyword: Particle Image velocimetry

Search Result 642, Processing Time 0.024 seconds

A PIV Measurement on Flow Characteristics inner Diffuser Pump Using High Resolution CCD Camera (고해상도 CCD 카메라를 이용한 디퓨져펌프 내부 유동특성에 대한 PIV 계측)

  • 김성윤;김범석;김정환;김유택;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.161-166
    • /
    • 2002
  • The resent experimental study is focused on the application of multi-point simultaneous measurement by PIV Particle Image Velocimetry) to guide vane region within diffuser pump. Various different kinds of rotational veto ity and changing clearance between Guide Vane and Impeller were selected as experimental condition. Optimized ross correlation identification to obtain velocity vectors is implemented with direct calculation of correlation coeffi cients. Fine optical setup concerned with PW performance is arranged for the accurate PW measurement of high peed complex flow. Variable flow pattern are represented quantitatively at the stator region.

  • PDF

A Study on the Flow Characteristic of the Diesel Engine DPF (디젤엔진용 매연여과장치 내부유동 특성 연구)

  • Go, Hyun-Sun;Jung, Chan-Gyu;Lee, Heang-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This paper addresses influence on the flow field by varying the length of DPF Inlet pipe in 5 ways. Numerical analysis is carried out by using PIV and commercial code and as a result, PIV and commercial code shows correlation correspond to 87%. Furthermore, in the same velocity condition, as stable and high pressure value is shown when the Inlet pipe length is 20mm, particulate filtering rate can be increased.

A PIV STUDY OF VORTEXING DURING DRAINING FROM Cylindric CONTAINERS (원형 용기의 중심에서 벗어난 유출구 위치에 따른 회전배수 특성의 PIV 연구)

  • Ju, M.G.;Sohn, C.H.;Gowda, B.H.L.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.89-92
    • /
    • 2007
  • In the present study, the flow field in a square container with various comer rounding is studied to investigate drain flow characteristics. An attempt has been made to understand the mechanism that is responsible for vortex suppressing by the different radius of rounding at the comer. For this purpose, flow visualization studies using PIV (Particle Image Velocimetry) are employed to determine the flow patterns in a square tank. Results are obtained when there is no draining and with draining. The flow field is visualized both in horizontal and vertical planes.

  • PDF

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles (기포운동에 따른 2상유동 특성에 관한 연구)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.268-273
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas is concentrated at the near nozzle, the flow parameters are high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (P.I..V) and a thermo-vision camera were used in the present study. The experimental results show that heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

PIV Investigations of the Flow Mixing Enhancement by Pulsatile Flow in a Grooved Channel (맥동유동에 의한 그루브 채널내 유동혼합 촉진에 관한 PIV 이용 연구)

  • 김동욱;김서영;이대영;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.324-331
    • /
    • 2004
  • Particle Image Velocimetry (PIV) measurements have been carried out to investigate the pulsatile flow characteristics in a triangular grooved channel. The results showed that a vortex was generated at the tip of the groove and flowed into the groove rotating inside during the acceleration phase of the main stream promoting the mixing of the fluid. Then, at the deceleration phase of the main stream, the vortex entrained fluid from the relatively slow moving main stream to grow bigger than the groove size. Finally the vortex was ejected to the main stream carrying the fluid away from the groove, resulting in the enhancement of mixing between the stagnant fluid in the groove and the main stream in the channel. It was found that the fluid mixing enhancement is maximized when the pulsatile period is the same as the time duration which the vortex takes to grow larger enough to fill the groove and to be ejected to the main stream.

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo;Belmiloud, Naser;Mertens, Paul W.
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

A Similarity of the Velocity Profiles According to Water Depth in Partially Filled Circular Pipe Flows (비만관 상태의 원형관로에서 수위에 따른 속도분포의 상사성)

  • Yoon, Ji-In;Kim, Young-Bae;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.28-32
    • /
    • 2008
  • Contrary to the flow rate in fully filled pipe flows, the flow rate in partially filled pipe flows is significantly influenced by the variation of water level, channel slop, and so on. The major difference in these two flows results from the existence of a free surface. To make it clear, in the present study, a similarity of the velocity profile in a partially filled circular pipe has been investigated according to the water level. A particle image velocimetry (PIV) technique was applied to measure the three-dimensional velocity profiles. As a result, there is found a similarity of the velocity profile near the central region. However, near the side wall, the similarity is broken due to the interaction between the wall and the free surface.

An Experimental Study on Shallow Water Effect in Slamming (천수에서의 슬래밍 현상에 대한 실험적 연구)

  • Kang, Hyo-Dong;Oh, Seung-Hoon;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • This study presents an experimental investigation of the shallow water impact of a box type structure. The analysis was done based on the video images captured by a high speed camera, the flow field obtained by PIV (Particle Image Velocimetry), and pressure measurements in the divided region. The video images showed quite good agreement with the description given by Korobkin. The PIV measurements of the velocity field provided a clear view of the flow pattern for all three stages. The pressure was measured at the bottom of the tank with strain gauge type pressure gauges. The pressure measurements showed the characteristics of divided regions.

Visualization of Flow and Wetting Transition in PDMS Superhydrophobic Microchannel (PDMS 기반 초소수성 마이크로 채널내의 유동 및 표면 젖음 전이 가시화에 관한 연구)

  • Kim, Ji-Hoon;Hong, Jong-In;Byun, Do-Young;Ko, Han-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.671-674
    • /
    • 2008
  • We investigate the slippage effect in a micro-channel depending on the surface characteristics; hydrophilic, hydrophobic, and super-hydrophobic wettabilities. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (Micro-PIV) and compared those in the hydrophilic glass, hydrophobic PDMS, and super-hydrophobic PDMS micro-channels. To directly measure the velocity in the super-hydrophobic micro-channel, the transverse groove structures are fabricated on the vertical wall in the micro-channel. The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves.

  • PDF

An Experimental Study on Flow Characteristics of Impinging Jet (1) (충돌제트의 유동특성에 관한 실험적 연구(1))

  • 김동균;김정환;배석태;김시범;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.37-42
    • /
    • 2000
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distances. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length , its variable is nozle plate to distances( 12d, 10d, 8d, 6d and 4d).

  • PDF