Browse > Article
http://dx.doi.org/10.5407/JKSV.2016.14.2.031

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines  

Kim, Hyoungsoo (Department of Mechanical and Aerospace Engineering, Princeton University)
Belmiloud, Naser (SCREEN SPE Germany GmbH)
Mertens, Paul W. (IMEC)
Publication Information
Journal of the Korean Society of Visualization / v.14, no.2, 2016 , pp. 31-39 More about this Journal
Abstract
We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.
Keywords
Tomographic PIV; Evaporating droplet; Azimuthal vortex flow; Non-uniformly receding contact line;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. O. Popov, Physical Review E 71, 036313 (2005).   DOI
2 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).   DOI
3 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Physical Review E 62, 756 (2000).   DOI
4 A. G. MarIn, H. Gelderblom, D. Lohse, and J. H. Snoeijer, Physical Review Letters 107, 085502 (2011).   DOI
5 P. J. Yunker, T. Still, M. A. Lohr, and A. Yodh, Nature 476, 308 (2011).   DOI
6 H. Y. Erbil, G. McHale, and M. Newton, Langmuir 18, 2636 (2002).   DOI
7 H. Masoud and J. D. Felske, Physics of Fluids 21, 042102 (2009).   DOI
8 A. Petsi and V. Burganos, Physical Review E 78, 036324 (2008).   DOI
9 U. Thiele and E. Knobloch, New Journal of Physics 8, 313 (2006).   DOI
10 J. K. Park, J. Ryu, B. C. Koo, S. Lee, and K. H. Kang, Soft Matter 8, 11889 (2012).   DOI
11 R. Bhardwaj, X. Fang, and D. Attinger, New Journal of Physics 11, 075020 (2009).   DOI
12 D. Orejon, K. Sefiane, and M. E. Shanahan, Langmuir 27, 12834 (2011).   DOI
13 K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, Measurement Science and Technology 15, 1104 (2004).   DOI
14 T. K. Pradhan and P. K. Panigrahi, Experiments in Fluids 56, 1 (2015).   DOI
15 H. Kim, S. Grosse, G. E. Elsinga, and J. Westerweel, Experiments in Fluids 51, 395 (2011).   DOI
16 J. A. Howarter and J. P. Youngblood, Langmuir 22, 11142 (2006).   DOI
17 J. A. Howarter and J. P. Youngblood, Macromolecules 40, 1128 (2007).   DOI
18 D. K. Schwartz, Annual Review of Physical Chemistry 52, 107 (2001).   DOI
19 K.-I. Iimura, Y. Nakajima, and T. Kato, Thin Solid Films 379, 230 (2000).   DOI
20 X. Zhao and R. Kopelman, The Journal of Physical Chemistry 100, 11014 (1996).   DOI
21 A. Fellah, N. Belmiloud, R. G. Haverkamp, Y. Hemar, D. Otter, and M. A. Williams, Carbohydrate Polymers 87, 806 (2012).   DOI
22 R. J. Adrian and J. Westerweel, Particle image velocimetry, Cambridge University Press, (2010).
23 B. Wieneke, Experiments in Fluids 45, 549 (2008).   DOI
24 N. Shahidzadeh-Bonn, S. Rafai, A. Azouni, and D. Bonn, Journal of Fluid Mechanics 549, 307 (2006).   DOI
25 B. Weon, J. Je, and C. Poulard, AIP Advances 1, 012102(2011).   DOI
26 E. Detrich, W. Sander, W. V. Claas, H. Kevin, K. E. Stefan, J. W. Z. Harold, and L. Detlef, Journal of Fluid Mechanics 794, 45-67 (2016).   DOI
27 W. Den, H. Bai, and Y. Kang, Journal of The Electro-chemical Society 153, G149 (2006).   DOI
28 H. Hu and R. G. Larson, The Journal of Physical Chemistry B 110, 7090 (2006).   DOI
29 G. E. Elsinga, TUDelft PhD thesis (2008).
30 D. Mampallil, D. van den Ende, and F. Mugele, Applied Physics Letters 99, 154102 (2011).   DOI
31 H. Lee, S. Yun, S. H. Ko, and K. H. Kang, Biomicrofluidics 3, 044113 (2009).   DOI
32 H. Hu and R. G. Larson, Langmuir 21, 3963 (2005).   DOI