• Title/Summary/Keyword: Particle Image velocimetry

Search Result 642, Processing Time 0.025 seconds

PIV Measurement and Flow Characteristics of Internal Flow Field within Ginseng Washing Machine (인삼세척기 내부유동장의 PIV계측 및 유동특성)

  • Na, Eun-Su;Song, Chi-Seong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.59-65
    • /
    • 2000
  • The objective of experimental study is to apply simultaneous measurement by PIV(Particle Image Velocimetry)to high_speed flow characteristics within Ginseng washing machine. Three different kinds of flow rate(15,20,27 $\ell$/min)are selected as experimental conditions. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. Instantaneous velocity distribution, time-mean velocity distribution and velocity profiles are represented quantitatively at the full-scale region for the deeper understanding of the flow characteristics in Ginseng washing machine.

  • PDF

An Experimental Study on the Wake of a Square Cylinder Using PIV Technique (PIV기법을 이용한 정사각 실린더의 후류에 관한 실험적 연구)

  • 이종붕;장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.124-135
    • /
    • 2004
  • An experimental study is performed turbulent flow behind a square cylinder by using 2-D PIV technique. The Reynolds number investigated are 10.000. 30.000 and 50,000. The mean velocity vector, time mean axial velocity turbulence intensity. kinetic energy and Reynolds shear stress behind the cylinder are measured, The numerical method used this study is a CFD code, STAR-CD. The numerical results are compared with these of experimental.

An Experimental Study on Swirling flow in a Cylindrical Annuli (원형 이중관 내의 선회유동에 관한 실험적 연구)

  • Chang T. H.;Lee K. S.;Lee H. S.;Kang C. S.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.89-95
    • /
    • 2002
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid. Using the Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulent intensity with swirl for Re = 20,000, 30,000, 50,000, and 70,000 along longitudinal sections and the results appear to be physically reasonable.

  • PDF

PIV를 이용한 만곡형 전개판의 가시화 실험

  • 박경현;이주희;배재현;현범수
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.45-46
    • /
    • 2001
  • PIV(Particle Image Velocimetry : 입자영상유속계)는 유동장에 분포된 추종입자의 위치를 영상처리에 의해 자동추적 함으로써 속도벡터를 전유동영역에 걸쳐 동시에 구할 수 있는 계측기법이다. 따라서, CFD와 같이 정량적 및 정성적으로 수치해석된 결과와 바로 비교 검토가 가능한 유일한 실험기법으로 인식되고 있다. 본 실험에서는 CFD에 의한 모형의 유체유동 특성을 분석하고 이를 회류수조에서 PIV를 이용해 모형 전개판 주위의 유체흐름을 분석하여 각 전개판 모형의 유체유동 특성을 파악하였다. (중략)

  • PDF

A Study on Wake Flow Characteristics of vertical Plate with Various Coner Shape (모서리 형상에 따른 수직벽 후류특성에 관한 연구)

  • Lee, Cheol-Jae;Cho, Dae-Hwan
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2011
  • In this study, the velocity distribution according to upper side coner shape of underwater construction with rectangular cylinder was measured with PIV method and the wake flow characteristics was considered. According to the coner shape, the flow pattern of wake flow was also differed greatly and the step-shaped coner of cut-off ratio B/H=0.06 was similar in the slope shape in result.

Three-dimensional Flow Structure inside a Plastic Microfluidic Element (미소유체요소 내부유동의 3차원 측정 및 수치해석)

  • Lee Inwon;An Kwang Hyup;Nam Young Sok;Lee In-seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • A three-dimensional inlet flow structure inside a microfluidic element has been investigated using a micro-PIV(particle image velocimetry) measurement as well as a numerical analysis. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. For the numerical analysis, a commercial software CFD-ACE+(V6.6) was employed for comparison with experimental data. Fixed pressure boundary condition and a 39900 structured grid system was used for numerical analysis. Velocity vector fields with a resolution of $6.7{\times}6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent melding process.

  • PDF

PIV measurements of a microfluidic elements fabricated in a plastic chip (플라스틱 미소유체요소 내부유동의 PIV 측정)

  • Lee, In-Won;Choi, Jay-Ho;Lee, In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.400-404
    • /
    • 2001
  • A micro-PIV(particle image velocimetry) measurement has been conducted to investigate flow fields in such microfluidic devices as microchannels and micronozzle. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. Velocity vector fields with a resolution of $6.7\times6.7{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent molding process. Flow fields in a variety of microchannels as well as micronozzle have been investigated.

  • PDF

Measurements of a microchannel flow using micro-PIV

  • Lee Inwon;Choi Jayho;Lee In-Seop
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.44-52
    • /
    • 2001
  • A micro-PIV(particle image velocimetry) measurement has been conducted to investigate flow fields in such microfluidic devices as microchannels and micronozzle. The present study employs a state-of-art micro-PIV system which consists of epi-fluorescence microscope, 620nm diameter fluorescent seed particles and an 8-bit megapixel CCD camera. Velocity vector fields with a resolution of $6.8\;\times\;6.8{\mu}m$ has been obtained, and the attention has been paid on the effect of varying measurement conditions of particle diameter and particle concentration on the resulting PIV results. In this study, the microfluidic elements were fabricated on plastic chips by means of MEMS processes and a subsequent molding process. Flow fields in a variety of microchannels as well as micronozzle have been investigated.

  • PDF

Experimental Investigation of the flow around an Oscillating Circular Cylinder by Using a PIV System (진동하는 원형주상체 주위의 유동에 관한 PIV를 이용한 실험적 연구)

  • Song Museok;Lee Sang-Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.60-67
    • /
    • 2003
  • Flow around an oscillating circular cylinder was experimentally investigated. With varying Keulegen-Carpenter(KC) number from 10 to 30 the flow field with vortex sheddings and the related hydrodynamic fortes exerting on the cylinder were measured. A newly developed PW(paricle image velocimetry) successfully captured the complex vortical flows varying with the KC number and the flow patterns were 'traverse street', 'single pairing' and 'double pairing' of vortices with increasing KC number, At a certain KC number range the lift force undergoes a transition showing little periodicity due to surrounding complicated shedded vortices.

  • PDF