• Title/Summary/Keyword: Particle Agglomeration

Search Result 180, Processing Time 0.025 seconds

Variation in optical, dielectric and sintering behavior of nanocrystalline NdBa2NbO6

  • Mathai, Kumpamthanath Chacko;Vidya, Sukumariamma;Solomon, Sam;Thomas, Jijimon Kumpukattu
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.77-91
    • /
    • 2013
  • High quality nanoparticles of neodymium barium niobium ($NdBa_2NbO_6$) perovskites have been synthesized using an auto ignition combustion technique for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscopy. UV-Visible absorption and photoluminescence spectra of the samples are also recorded. The structural analysis shows that the nano powder is phase pure with the average particle size of 35 nm. The band gap determined for $NdBa_2NbO_6$ is 3.9 eV which corresponds to UV-radiation for optical inter band transition with a wavelength of 370nm. The nanopowder could be sintered to 96% of the theoretical density at $1325^{\circ}C$ for 2h. The ultrafine cuboidal nature of nanopowders with fewer degree of agglomeration improved the sinterability for compactness at relatively lower temperature and time. During the sintering process the wide band gap semiconducting behavior diminishes and the material turns to a high permittivity dielectric. The microstructure of the sintered surface was examined using scanning electron microscopy. The striking value of dielectric constant ${\varepsilon}_r=43$, loss factor tan ${\delta}=1.97{\times}10^{-4}$ and the observed band gap value make it suitable for many dielectric devices.

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4

  • Ahmad, Naveed;Javed, Mohsin;Qamar, Muhammad A.;Kiran, Umbreen;Shahid, Sammia;Akbar, Muhammad B.;Sher, Mudassar;Amjad, Adnan
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.225-235
    • /
    • 2022
  • It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

Preparation of Polystyrene Beads by Suspension Polymerization with Hydrophobic Silica as a Stabilizer in Aqueous Solution (소수성 실리카를 안정제로 이용하는 수용액 상에서의 현탁중합법에 의한 폴리스티렌 입자 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.498-504
    • /
    • 2006
  • A suspension polymerization of styrene In aqueous phase was employed to study if polystyrene particles ranging from 1 to $20{\mu}m$ can be produced. Hydrophobic silica was selected as a stabilizer and azo-bisisobutyronitrile (AIBN) as an initiator. Polymerization reaction was carried out at a selected temperature in the range of $65{\sim}95^{\circ}C$. Stabilizer concentration was varied from 0.17 to 3.33 wt% compared to the water while the concentration of the initiator was raised from 0.13 to 6.0 wt% compared to the monomer. Dispersion of hydrophobic silica into the water phase was achieved by precise control of pH. Optimum dispersion of silica was obtained at pH 10. Average particle diameter decreased with increasing amounts of stabilizer concentration initially, exhibiting the minimum average diameter at 1.67 wt% of stabilizer concentration, after which it started to Increase. It is speculated that an excessive presence of stabilizer encouraged a secondary reaction in the reaction medium, which led to particle agglomeration, and as a result an increase in average particle diameter. Molecular weight was found to be independent of stabilizer concentration between 0.13 and 1.00 wt% whereas, it increased when stabilizer concentration exceeded 1.67 wt%. Variation of molecular weight was probably caused by the reduced activity and efficiency of initiator due to the high concentration of silica, and the secondary reaction in the reaction medium, as well. An increase in the Initiator concentration and/or reaction temperature resulted in an increase in both reaction rate and particle diameter. Consequently, we have confirmed that spherical polystyrene particles with $1{\sim}20{\mu}m$ in diameter can be prepared by careful selection of the concentration of stabilizer, initiator, pH and reaction temperature.

The Study of Characteristics of Cosmetic Powder by Using Various Grinding mill (화장품용 분체의 분쇄방식에 따른 특성연구)

  • Shim, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.500-507
    • /
    • 2008
  • By Using various grinding mill in powder cosmetics manufacturing process; screen milt and pin mill, jet mill, properties of the powder and grinding mills were studied; talc, mica, nylon powder, silica, titanium dioxide. Besides, the experiments fur evaluation of grinding were performed by using iron oxides those are tracers. In powders of plate shape, they were grinded more vertically than horizontally at the screen mill and pin mill, although were all grinded vertically and horizontally at the jet mill. The spheric powders became the primary particles or aggregation by electrostatic interaction at the screen mill and pin mill. But, at the jet mill, they resulted the agglomeration or transformation or damage up to 2bar. Titanium dioxides became the primary particles by all grinding mill. Pin mill has an excellent result in experiments which is a change of the tone of color by grinding. From these results, suggest that the jet mill is used to pre-treat of powders of plate shape in practical cosmetic manufacturing process, and the screen mill and pin mill are used to match the color of powder cosmetics. If industrial process condition is taken into consideration, suggest that 4times of grinding is excellent on grinding effect by the screen mill, and twice grinding by the pin mill and grind air pressure of 1bar by the jet mill.

A Study on Synthesis and Dispersion of Silver Nano Particle Using Trisodium Citrate (Trisodium Citrate을 이용한 은 나노입자의 합성 및 분산성에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.772-779
    • /
    • 2016
  • Silver nanoparticles were prepared by reacting silver nitrate and trisodium citrate in an aqueous solution. Their size and shape were investigated by scanning electron microscopy (SEM). The synthesis was carried with different silver nitrate concentration, addition of TSC, solvent, surfactant, ultrasonication, and dispersing agent. With higher concentration of silver nitrate or TSC, the particles became large or agglomerated. The SEM results showed that the nanoparticles have spherical and pseudospherical shape with a narrow size distribution. The hydrophobic solvent did not affect the dispersibility, but the hydrophilic solvent enhanced it. The addition of HPMC surfactant caused the size to increase (50-100 nm) with non-uniform shapes and partial agglomeration. The dispersibility was significantly improved by ultrasonication for over 3 hours after the addition of a dispersing agent. Complete dispersion was achieved by adding the dispersant, and the nanoparticle sizes were as follows: 30-40 nm (BYK-182) < 42-78 nm (BYK-192) < 51-113 nm (BYK-142). The nanoparticles were 38.45-46.28 nm after the addition of 2-4 wt% TSC in 0.002 M silver nitrate solution.

Improvement in the Dispersion Stability of Iron Oxide (Magnetite, Fe3O4) Particles with Polymer Dispersant Inject (고분자 분산제 주입을 통한 철산화물(Magnetite, Fe3O4) 입자의 분산 안정성 향상)

  • Song, Geun Dong;Kim, Mun Hwan;Lee, Yong Taek;Maeng, Wan Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.656-662
    • /
    • 2013
  • The iron oxide ($Fe_3O_4$) particles in the coolant of the secondary system of a nuclear power plant reduce the heat transfer performance or induce corrosion on the surface of the heat transfer tube. To prevent these problems, we conducted a study to improve the dispersion stability of iron oxide using polymeric dispersant injection in simulated secondary system water. The three kinds of anionic polymers containing carboxyl groups were selected. The dispersion characteristics of the iron oxide particles with the polymeric dispersants were evaluated by performing a settling test and measuring the transmission, the zeta potential, and the hydrodynamic particle size of the colloid solutions. Polymeric dispersants had a significant impact on the iron oxide dispersion stability in an aqueous solution. While the dispersant injection tended to improve the dispersion stability, the dispersion stability of iron oxide did not increase linearly with an increase in the dispersant concentration. This non-linearity is due to the agglomerations between the iron oxide particles above a critical dispersant concentration. The effect of the dispersant on the dispersion stability improvement was significant when the dispersant concentration ratio (ppm, dispersant/magnetite) was in the range of 0.1 to 0.01. This suggests that the optimization of dispersant concentration is required to maximize the iron oxide removal effect with the dispersant injection considering the applied environments, the iron oxide concentration and the concentration ratio of dispersant to iron oxide.

Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability (높은 안정성을 갖는 초미립 폴리에틸렌이민-금 나노입자)

  • Kim, Eun-Jung;Yeum, Jeong-Hyun;Ghim, Han-Do;Lee, Se-Guen;Lee, Ga-Hyun;Lee, Hyun-Ju;Han, Sang-Ik;Choi, Jin-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • This study is related to the preparation of biocompatible gold nanoparticles (AuNPs) which are stable in aqueous solutions for a long time. Ultrasmall polyethyleneimine (PEI)-capped AuNPs (PEI-AuNPs) with limited agglomeration were prepared in aqueous solutions at room temperature, which were based on the roles of PEI as a reductant and a stabilizer. PEI-AuNPs with an average size of 8~12 nm formed highly stable nanocolloids with an average hydrodynamic cluster size of around 50 nm in aqueous media. At a low concentration of metal precursor hydrogen tetrachloroaurate (III), the particle size was reduced noticeably. The typical peaks of gold were observed in the X-ray diffraction pattern of AuNPs. The cell viability of 98% was obtained in the case of PEI-AuNPs, while PEI was cytotoxic. The PEI-AuNP is considered to be a potential candidate as a contrast agent for computed tomography.

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell (알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석)

  • Yuk, Eunsung;Lee, Hyejin;Jung, Namgee;Shin, Dongwon;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

Study on Physical Change in the Earthen Finish Layer of Tomb Murals Due to Drying (건조에 따른 고분벽화 토양 마감층의 물리적 변화)

  • Cho, Ha-Jin;Lee, Tae-Jong;Lee, Hwa-Soo;Chung, Yong-Jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.148-165
    • /
    • 2017
  • Mural paintings drawn inside ancient tombs are very sensitive to changes in the environment such as temperature and humidity, especially the finish layer of the tomb murals differ in preservability depending on the material properties and humidity conditions. In this study, I examined the mural painting of Songsan-ri Tomb No.6, where the finish layer was made of earth, and identified the physical changes that can occur due to drying, depending on the material properties of the finish layer. I found out through particle size analysis that the finish layer of the mural painting in Songsan-ri Tomb No.6 is about 85.0wt% below silt, about 14.0wt% clay therein, mostly composed of silt and below clay. I also found out through physical property evaluation that surface change rate of samples showed the largest change at 15.5% in reproduced finish layer sample made up of bentonite, followed by 7.8% of reproduced finish layer sample made up of celadon soil, 6.3% of reproduced finish layer sample made up of loess, 6.2% of reproduced finish layer sample composed of white clay and the same order of change in appearance was confirmed in each sample consisted of soil. In addition, it showed the same trend of surface change rate, and the bentonite condition showed the largest change, in the measurement of shrinkage rate and expansion rate. The experiment shows that the finish layer composed of soil is affected by cohesion among particles according to the content of fine parts and the relationship between the agglomeration due to the content of the differentiated part and the stress due to the expansibility depending on the kind of the clay mineral etc. Therefore, it can be concluded that the physical damage occurred in the mural painting finish layer of the Songsan-ri Tomb No.6 is related to the factors such as the material characteristics of the soil and the highly humid environmental change inside the tomb.