Browse > Article
http://dx.doi.org/10.12989/amr.2013.2.2.077

Variation in optical, dielectric and sintering behavior of nanocrystalline NdBa2NbO6  

Mathai, Kumpamthanath Chacko (Department of Physics, St. Aloysius' College)
Vidya, Sukumariamma (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College)
Solomon, Sam (Department of Physics, St. John's College)
Thomas, Jijimon Kumpukattu (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College)
Publication Information
Advances in materials Research / v.2, no.2, 2013 , pp. 77-91 More about this Journal
Abstract
High quality nanoparticles of neodymium barium niobium ($NdBa_2NbO_6$) perovskites have been synthesized using an auto ignition combustion technique for the first time. The nanoparticles thus obtained have been characterized by powder X-ray diffraction, thermo gravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscopy. UV-Visible absorption and photoluminescence spectra of the samples are also recorded. The structural analysis shows that the nano powder is phase pure with the average particle size of 35 nm. The band gap determined for $NdBa_2NbO_6$ is 3.9 eV which corresponds to UV-radiation for optical inter band transition with a wavelength of 370nm. The nanopowder could be sintered to 96% of the theoretical density at $1325^{\circ}C$ for 2h. The ultrafine cuboidal nature of nanopowders with fewer degree of agglomeration improved the sinterability for compactness at relatively lower temperature and time. During the sintering process the wide band gap semiconducting behavior diminishes and the material turns to a high permittivity dielectric. The microstructure of the sintered surface was examined using scanning electron microscopy. The striking value of dielectric constant ${\varepsilon}_r=43$, loss factor tan ${\delta}=1.97{\times}10^{-4}$ and the observed band gap value make it suitable for many dielectric devices.
Keywords
nanoparticles; combustion synthesis; perovskites; neodymium; barium niobate; sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aruna, S.T. and Mukasyan, A.S. (2008), "Combustion synthesis and nanomaterials", Cur. Opin. Solid. St. Mater., 12, 44-50.   DOI   ScienceOn
2 Bhalla, A.S., Guo, R.Y. and Roy, R. (2000), "The perovskite structure - a review of its role in ceramic science and technology", Mater. Res. Innov., 4(1), 3-26.   DOI   ScienceOn
3 Chinarro, E., Jurado, J.R. and Colomer, M.T. (2007), "Synthesis of ceria-based electrolyte, nanometric powders by urea-combustion technique", J. Eur. Ceram. Soc., 27(13-15), 3619-3623.   DOI   ScienceOn
4 Cruickshank, D. (2003), "1-2 GHz dielectrics and ferrites: overview and perspectives", J. Eur. Ceram. Soc., 23(14), 2721-2726.   DOI   ScienceOn
5 Barton, D.G., Shtein, M., Wilson, R.D., Soled, S.L. and Iglesia, E. (1999), "Structure and electronics properties of solid acids based on tungsten oxide nanostructures", J. Phys. Chem., 103(4) 630-640.   DOI   ScienceOn
6 Gleiter, H. (2000), "Nanostructured materials: basic concepts and microstructure", Acta Mater., 48(1), 1-29.   DOI   ScienceOn
7 Deganello, F., Marci, G. and Deganello, G. (2009), "Citrate-nitrate auto-combustion synthesis of perovskitetype nanopowders: A systematic approach", J. Eur. Ceram. Soc., 29(3), 439-450.   DOI   ScienceOn
8 Denzler, D., Olschewski, M. and Sattler, K. (1998), "Luminescence studies of localized gap states in colloidal ZnS nanocrystals", J. Appl. Phys.,84(5), 2841-2845.   DOI   ScienceOn
9 Dias, A., Abdulkalam, L., Sebastian, T.M., Paschol, C.W.A. and Moreira, L.R. (2006), "Chemical substitution in Ba (RE1/2Nb1/2)O-3 (RE = La, Nd, Sm, Gd, Tb, and Y) microwave ceramics and its influence on the crystal structure and phonon modes", Chem. Mater., 18, 214 -220.   DOI   ScienceOn
10 Goldberg, P. (1966), Luminescence of Inorganic Solids, Academic Press, New York.
11 Gruber, D., Kraus, F. and Muller, J. (2003), "A novel gas sensor design based on $CH_{4}/H_{2}/H_{2}O$ plasma etched ZnO thin films", Sensor. Actuat. B Chem., 92(1-2), 81-89.   DOI   ScienceOn
12 Henglein, A, (1989), "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles", Che. Rev., 89(8), 1861-1873.   DOI
13 An, C.H., Tang, K.B., Wang, C.R., Shen, G.Z., Jin,Y. and Qian, Y.T. (2002), "Characterization of $LiNbO_{3}$ nanocrystals prepared via a convenient hydrothermal route", Mater. Res. Bull., 37(11), 1791-1796.   DOI   ScienceOn
14 James, J., Jose, R., John, A.M. and Koshy, J. (2004), "Single Step process for the synthesis of nanoparticles of ceramic oxide powders", US Patent No 6, 835, 367.
15 Aneesh, P.M., Mini, K.K. and Jayaraj, M.K. (2009), "Hydrothermal synthesis and characterization of undoped and Eu doped $ZnGa_{2}O_{4}$ nanoparticles", J. Electrochem. Soc., 156(3), K33-K36.   DOI   ScienceOn
16 Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P. (2001), "Room-temperature ultraviolet nanowire nanolasers", Science 292(5523), 1897-1899.   DOI   ScienceOn
17 Keis, K., Magnusson, E., Lindstrom, H., Lindquist, S.E., and Hagfeldt, A. (2002), "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes", Sol. Energy Mater. Sol. Cells, 73(1), 51-58.   DOI   ScienceOn
18 Hughes, H., Iddles, D.M. and Reaney, I.M. (2001), "Niobate-based microwave dielectrics suitable for third generation mobile phone base stations", Appl. Phys. Lett., 79(18), 2952-2954.   DOI   ScienceOn
19 Kurian, J., John, A.M., Sajith, P.K., Koshy, J., Pai, S.P. and Pinto, R. (1998), "Superconducting $YBa_{2}Cu_{3}O_{7-\delta}$ -Ag Thin films (Tc(0) = 90 K) by pulses Laser Deposition on Polycrystalline $Ba_{2}NdNbO_{6}$: A novel substrate for $YBa_{2}Cu_{3}O_{7-\delta}$ -Ag films", Jpn. J. Appl. Phys., 37(10A), L1114-L1147.
20 Jose, R., James, J., John, A.M., Divakar, R. and Koshy, J. (2000), "Synthesis of nanosized $Ba_{2}LaZrO_{0.5}$ ceramic powders through a novel combustion route", J. Mater. Synth. Process, 8(1), 1-5.   DOI   ScienceOn
21 Kong, L.B., Zhang, T.S., Ma, J. and Boey, F. (2008), "Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique", Prog. Mater.Sci., 53(2), 207-322.   DOI   ScienceOn
22 Kurian, J., Nair, K.V.O., Sajith, P.K., John, A.N. and Koshy, J., (1998), "Bi(2223) thick films ($Tc_{(0)}$ = 109K) on $Ba_{2}GdNbO_{6}$ a new perovskite ceramic substrate for BSCCO superconductor", Appl. Supercond., 6(6), 301-304.
23 Koshy, J., Kurian, J., Thomas, J.K., Yadava, Y.P. and Dhamodaran, A.D. (1994), "Rare earth Barium niobates a new class of potential substrates for YBCO superconductor", Jpn. J. Appl. Phys., 33,117-121.   DOI
24 Matthias, B.T., and Remeika, J.P. (1949), "Ferroelectricity in the Ilmenite Structure", Phys.Rev., 76(12), 1886-1887.
25 Koshy, J., Kumar, K.S., Kurian, J., Yadava, Y.P. and Damodaran, A.D. (1994), "$YBa_{2}SnO_{0.5}$, a novel ceramic substrate for YBCO and BiSCCO superconductors", Bull. Mater. Sci., 17(6), 577-584.   DOI
26 Koshy, J., Thomas, J.K., Kurian, J., Yadava, Y.P. and Damodaran, A.D. (1993), "$GdBa_{2}NbO_{6}$ a new ceramic substrate for YBCO thick films", Mater. Lett., 17(6), 393-397.   DOI   ScienceOn
27 Mahan, G.D. (1983), "Intrinsic defects in ZnO varistors", J. Appl. Phys., 54(7), 3825-3832.   DOI   ScienceOn
28 Zhang, M., Hue, C., Liu, H., Xiong, Y.F. and Zhang, Z. (2009), "A rapid - response humidity sensor based on $BaNbO_{3}$ crystals", Sensor. Actuat. B Chem., 136(1), 128-132.   DOI   ScienceOn
29 Niederberger, M., Pinna, N., Polleux, J. and Antonietti, M. (2004), "A general soft-chemistry route to perovskites and related materials: Synthesis of $BaTiO_{3}$, $BaZrO_{3}$, and $LiNbO_{3}$ nanoparticles", 43(17), Angew. Chem. Int. Edit., 2270-2273.   DOI   ScienceOn
30 Padmakumar, H., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K. and Koshy, J. (2008), "Characterization and sintering of $BaZrO_{3}$ nanoparticles synthesized through a single-step combustion process", J. Alloy. Compd., 458(1-2), 528-531.   DOI   ScienceOn
31 Patro, P.K., Kulkarni, A.R. and Harendranath, C.S. (2003), "Combustion synthesis of $Sr_{0.5}Ba_{0.5}Nb_{2}O_{6}$ and effect of fuel on its microstructure and dielectric properties", Mater. Sci. Bull., 38(2), 245-259.   DOI   ScienceOn
32 Ianos, R., Lazau, I., Pacurariu, C. and Barvinschi, P. (2009), "Fuel mixture approach for solution combustion synthesis of $Ca_{3}Al_{2}O_{6}$ powders", Cement Concrete Res., 39(7), 566-572.   DOI   ScienceOn
33 Payling, R. and Larkins, P. (2000), Optical Emission Line of Elements, John Wiley and sons, New York.
34 Ramanujan, R.V., (2003), "Nanostructured electronic and magnetic materials", Sadhana, 25(1-2), 81-96.
35 Ratheesh, R., Wohlecke, M., Berge, B., Wahlbrink, T., Haeuseler, H., Rul, E., Blachnik, R., Balan, P., Santana, N. and Sebastian, M.T., (2000), "Raman study of the ordering in $SrB_{0.5}Nb_{0.5}O_{3}$ compounds", J. Appl. Phys., 88, 2813-2818.   DOI   ScienceOn
36 Rout, D., Babu, G.S., Subramanian,V. and Sivasubramanian,V. (2008), "Study of Cation Ordering in $Ba(Yb_{1/2}Ta_{1/2})O_{3}$ by X-Ray Diffraction and Raman Spectroscopy", Int. J. Appl. Ceram.Technol., 5(5), 522-528.   DOI   ScienceOn
37 Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. and Nakamura, M. (2004), "Lead-free piezoceramics", Nature, 432(7013), 84-87.   DOI   ScienceOn
38 Thomas, J.K., Padmakumar, H., Pazhani, R., Solomon, S., Jose, R. and Koshy, J. (2006), "Synthesis of strontium zirconate as nanocrystals through a single step combustion process", Mater. Lett., 61(7), 1592-1595.
39 Specking, W., Kiesel, H., Nakajima, H., Ando, T., Tsuji, H., Yamada, Y. and Nagata, M. (1993), "First results of stress effects on Ic of $Nb_{3}Al$ cable in conduit fusion superconductors", IEEE. T. Appl. Supercon., 3(1),1342-1345.   DOI   ScienceOn
40 Suryanarayana, C. (1994), "Structure and properties of nanocrystalline materials", Bull. Mater. Sci.,17(4), 307-346.   DOI   ScienceOn
41 Wood, B.D., Mocanu, V. and Gates, B.D. (2008), "Solution-phase synthesis of crystalline lithium niobate nanostructures", Adv. Mater., 20(23), 4552-4556.   DOI   ScienceOn
42 Vijayakumar, C., Padma Kumar, H., Solomon, S., Thomas, J.K., Wariar, P.R.S. and John, A. (2009), "FTRaman and FT-IR vibrational spectroscopic studies of nanocrystalline $Ba_{2}RESbO_{6}$ (RE = Sm, Gd, Dy and Y) perovskites", J. Alloys Compd., 480(2), 167-170.   DOI   ScienceOn
43 Wang, L.H., Yuan, D.R., Duan, X.L., Wang, X.Q. and Yu, F.P. (2007), "Synthesis and characterization of fine lithium niobate powders by sol-gel method", Crys. Res. Technol., 42(4), 321-324.   DOI   ScienceOn
44 Wang, X., Zhuang, J., Peng, Q. and Li, Y. (2005), "A general strategy for nanocrystal synthesis", Nature, 437, 121-124.   DOI   ScienceOn
45 Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J. and Bossi, D.E. (2000), "A review of lithium niobate modulators for fiber-optic communications systems", IEEE J. Sel. Top. Quant., 6(1), 69-82.   DOI   ScienceOn
46 Zhao, L.L., Steinhart, M., Yosef, M., Lee, S.K. and Schlecht, S. (2005), "Large-scale templateassisted growth of $LiNbO_{3}$ one-dimensional nanostructures for nano-sensors", Sens. Actuat. B-Chem., 109(1), 86-90.   DOI   ScienceOn
47 Zupan, K., Marinsek, M., Pejovnik, S., Macek, J. and Zore, K. (2004), "Combustion synthesis and the influence of precursor packing on the sintering properties of LCC nanopowders", J. Eur. Ceram. Soc., 24,1935-1939.   DOI   ScienceOn
48 Prasanth, C.S., Padmakumar, H., Pazhani, R., Solomon, S. and Thomas, J.K. (2008), "Synthesis, characterization and microwave dielectric properties of nanocrystalline $CaZrO_{3}$ ceramics", J. Alloy. Compd., 464(1-2), 306-309.   DOI   ScienceOn
49 Aven, M. and Prener, J.S. (1967), Physics and Chemistry of II-VI Compounds, North Holand, Amsterdam.
50 Guo, Y.P., Kakimoto, K. and Ohsato, H. (2004), "Phase transitional behavior and piezoelectric properties of ($Na_{0.5}K_{0.5}$) $NbO_{3}$-$LiNbO_{3}$ ceramics", Appl. Phys.Lett., 85(18), 4121-4123.   DOI   ScienceOn
51 Schwesyg, J.R., Eggert, H.A., Buse, K., Sliwinska, E., Khalil, S., Kaiser, M. and Meerholz, K. (2007), "Fabrication and optical characterization of stable suspensions of iron- or copper-doped lithium niobate nanocrystals in heptanes", Appl. Phys. B- Lasers and Optics, 89(1), 15-17.   DOI
52 Magrez, A., Vasco, E., Seo, J.W., Dieker, C., Setter, N. and Forro, L. (2006), "Growth of single crystalline $KNbO_{3}$ nanostructures", J. Phys. Chem. B, 110(1), 58-61.   DOI   ScienceOn