• Title/Summary/Keyword: Particle

Search Result 15,995, Processing Time 0.036 seconds

Development of Tethered-Balloon Package System for Vertical Distribution Measurement of Atmospheric Aerosols (Tethered-Balloon Package System 개발 및 대기 에어로졸의 연직 분포 측정)

  • Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • For a vertical atmospheric aerosol distribution measurement, a very compact and light particle sampling package is developed. This package includes a compact optical particle counter (Hy-OPC), a light and small condensation particle counter (Hy-CPC), sensors (GPS, wind velocity, temperature, humidity), and a communication and system control board. This package is attached to He balloon and the altitude is controlled by a winch. Using this system the vertical particle size distribution was measured. The test results showed that the ground base atmospheric particle measurement result may be a lot different from that high above the ground.

Effects of Particle Size and Injector Geometry on Particle Dynamics (입자크기와 노즐형상이 입자유동특성에 미치는 영향)

  • 전운학;김종철;황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.97-103
    • /
    • 1998
  • The flow structure of particles for two different injectors has been investigated experimentally by means of a Phase Doppler Particle Analyzer(PDPA). Two injectors used in the present study are the pipe and contraction nozzle. Particles of 0.8${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 60 ${\mu}{\textrm}{m}$, and 100${\mu}{\textrm}{m}$ diameter were injected with a constant mass loading ratio of 0.01 and a Reynolds number of 13200. The initial mean velocity and turbulent intensity of particle are strongly influenced by the particle size and the injector geometry. The flow angles of particle at nozzle exit are sensitive to the particle size rather than the injector geometry.

  • PDF

Characteristics of Particle Laden Flows in Circular Microchannels (원형 마이크로채널 내의 입자가 부유된 유동의 특성)

  • Kim Y.W.;Jin S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

Concentration and Seasonal Variation of Particle PCBs in Air

  • Yeo Hyun-Gu;Chun Man-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.13-21
    • /
    • 2005
  • Atmospheric concentrations of PCBs were monitored in Ansung-city, Kyonggi province during the 2001/2002 to characterize the concentration distribution and seasonal variation of particle polychlorinated biphenyls (PCBs). Average concentration of particle bound PCB showed maximum value for penta-CBs and minimum value for octa-CBs. Seasonal contributions $(%\)$ of total particle PCBs showed the highest value in winter months and lowest value in summer month, This result indicated that concentration of total particle PCBs increased with decreasing temperature in the atmosphere. Therefore, particle PCBs were easily formed by the condensation of gas phase PCBs in winter months. The total particle PCBs exhibited an inverse correlation with temperature (p<0.01) which suggested that particle PCBs were easily formed by condensation of gaseous PCBs in winter months.

Generation and Size Control of Particle Beams at Low Pressures Using Aerodynamic Lenses (저압상태에서 공기역학적 렌즈를 이용한 입자 빔의 생성 및 크기 제어)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1320-1326
    • /
    • 1999
  • Since it is not possible to generate spatially uniform particle distribution at low pressures in which in-situ particle monitors(ISPMs) are normally operated, it is of interest to investigate the response of an ISPM to particle beams at low pressures. The purpose of this study is to develop technique that can control the size of particle beams. In this study, particle beams were generated at low pressures by using identical aerodynamic lenses, and their shape and size were visualized by collecting uniform sized methylene blue aerosol particles on a filter media. It was found that the size of particle beams depends on the number of lens, the distance between lenses, and the downstream distance from the final lens. The size of particle beams decreases with increasing distance between lenses, and increases with increasing downstream distance from the final lens. The experimental results obtained in this work will be used to investigate performance of an ISPM at low pressures.

Analysis of Electrical discharge signal according to particle state in GIS (GIS내 파티클의 상태에 따른 전기적 방전 신호 분석)

  • Lee, Dong-Zoon;Lee, Gon;Kwak, Hee-Ro;Kim, Kyung-Wha;Kwon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1084-1086
    • /
    • 1999
  • The breakdown was caused by particle in GIS and various methode was suggested to find particle in GIS. In this paper, four states of particle was imitated which are particle on electrode, particle on enclosure, particle on spacer and crossing particle. The discharge voltage of each states was classified by four voltages which are initial, development, later and close discharge voltage. $\Phi$-Q-N pattern was analyzed according to the states and to the discharge voltages. In the result, the electrical discharge pattern according to the particle states may be distinguished.

  • PDF

The Effect of W Particle Volume Percent on the Residual Stress of W Heavy Alloy (텅스텐계 중합금에서 텅스텐 입자의 부피비가 잔류응력에 미치는 영향)

  • 송홍섭
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1994
  • Since the coefficient of thermal expansion (CTE) of matrix phase is larger about 4 times than that of W particle in tungsten heavy alloy, the thermal stresses due to the CTE difference between the two phases are induced in the alloy during heating and cooling processes. In the present study, a series of W heavy alloy containing various W particle volumes of 0 to 90% is made to investigate the residual stress taking place during cooling process. The CTE and residual stress of the series of alloy are measured by dilatometer and X-ray diffractometer. The residual stress of W particle is in compressive stress irrespective of W particle vol% and tends to increase with decreasing W particle vol% while that of the matrix phase is in tensile stress. The measured residual stress of W particle is about a third of calculated thermal stress. The influence of W particle vol% on the residual stress of W heavy alloy is discussed in terms of the deformation behaviors of W particle and matrix phase.

  • PDF

Single Particle Analysis of Atmospheric Aerosol Particles Collected in Seoul, 2001, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis를 이용한 2001년 서울시 대기 중 입자상 물질 분석)

  • Koo Hee Joon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.823-832
    • /
    • 2004
  • Atmospheric aerosol particles collected in Seoul on four single days, each in every seasons of 2001, were characterized and classified on the basis of their chemical species using low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA). Low-Z particle EPMA technique can analyze both the size and the chemical species of individual aerosol particles of micrometer size and provide detailed information on the size distribution of each chemical species. The major chemical species observed in Seoul aerosol were aluminosilicate, silicon dioxide, calcium carbonate, organic, carbon-rich, marine originated, and ammonium sulfate particles, etc. The soil originated species, such as aluminosilicate, silicon dioxide, and calcium carbonate were the most popular in the coarse fraction, meanwhile, carbonaceous and ammonium sulfate were the dominant species found in the fine fraction. Marine originated species such as sodium nitrate was frequently encountered, up to 30% of the analyzed aerosol particles.

Distributions of Mean Particle Size and Age on the Lunar Surface

  • Jung, Min-Sup;Kim, Sung-Soo S.;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • We measure the degree of polarization of the lunar regolith to map the distributions of the age and the particle size. We use a 12cm refracting telescope with a 2k-square pixel color CCD (R band) and a polarization filter. The angular resolution obtained is 3.02 km/pixel. Our goal is to obtain a map of the lunar particle size distribution on the lunar regolith and then that of the age distribution. Polarization of the light scattered by lunar surface contains information on their mean particle size. The mean particle size of the lunar surface has been decreased by continued micro-meteoroid impact over a long period. One can estimate the age of the lunar surface if the mean particle size is known. Particle sizes can be measured through observations of polarization because the mean particle size is related to the maximum polarization and albedo. The age and the particle size of the lunar regolith can give vital information for the future lunar exploration.

  • PDF

Efficient Computation of Two-Phase Flow by Eulerian-Lagrangian Method Using Separate grids for the Particles and Flow Field (Eulerian-Lagrangian 방법에서 입자 및 유동 격자계 분리를 통한 2상 유동의 효율적 계산)

  • Pak S. I.;Lee J K.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.43-48
    • /
    • 2003
  • When the Eulerian-Lagrangian method is used to analyze the particle laden two-phase flow, a large number of particles should be used to obtain statistically meaningful solutions. Then it takes too much time to track the particles and to average the particle properties in the numerical analysis of two-phase flow. The purpose of this paper is to reduce the computation time by means of a set of particle gird separate to the flow grid. Particle motion equation here is the simplified B-B-O equation, which is integrated to get the particle trajectories. Particle turbulent dispersion, wall collision, and wall roughness effects are considered but the two-way coupling effects between gas and particles are neglected. Particle laden 2-D channel flow is solved and it is shown that the computational efficiency is indeed improved by using the current method

  • PDF