• Title/Summary/Keyword: Partial feedback

Search Result 115, Processing Time 0.021 seconds

Performance Analysis of Proportional Fair Scheduling with Partial Feedback Information for Multiuser MIMO-OFDMA Systems (다중 사용자 MIMO-OFDMA 시스템에서 부분 궤환 정보를 이용한 비례적 공정 스케줄링의 성능 분석)

  • Kang, Min-Gyu;Byun, Il-Mu;Park, Jin-Bae;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we analyze the performance of normalized SNR based proportional fair scheduling with partial feedback information for multiuser MIMO-OFDMA systems. The closed form expression on the downlink capacity of the selective partial CQI feedback scheme is derived and its asymptotic behavior is investigated. From the performance analysis and numerical results, it is found that the optimal growth rate of downlink capacity can be achieved with bounded average feedback overhead irrespective of the number of users.

An Efficient Algorithm for Partial Scan Designs (효율적인 Partial Scan 설계 알고리듬)

  • Kim, Yun-Hong;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.210-215
    • /
    • 2004
  • This paper proposes an implicit method for computing the minimum cost feedback vertex set for a graph. For an arbitrary graph, a Boolean function is derived, whose satisfying assignments directly correspond to feedback vertex sets of the graph. Importantly, cycles in the graph are never explicitly enumerated, but rather, are captured implicitly in this Boolean function. This function is then used to determine the minimum cost feedback vertex set. Even though computing the minimum cost satisfying assignment for a Boolean function remains an NP-hard problem, it is possible to exploit the advances made in the area of Boolean function representation in logic synthesis to tackle this problem efficiently in practice for even reasonably large sized graphs. The algorithm has obvious application in flip-flop selection for partial scan. The algorithm proposed in this paper is the first to obtain the MFVS solutions for many benchmark circuits.

The Posture Control of One-wheel Unicyle Robot Using Partial Feedback Linearization (부분 피드백 선형화를 이용한 One-wheel Unicycle Robot의 자세 제어)

  • Kim, Jin-Seok;Cho, Young-Jin;Kim, Young-Tark
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.68-75
    • /
    • 2007
  • In this study, the ultimate goal is to acquire stability when turning around efficiently by using the controller which is applied partial feedback linearization of One-wheel Unicycle Robot. When moving around, linear controller could result in unstable factor according to widening operation range. So in order to reduce instability, 1 have developed Non-linear Controller using Partial Feedback Linearization. Compared with linear controller, Non-linear Controller guarantees the superiority of Regulating Control and Tracking Control in direct and also revolution motion of Robot. I'm sure of the Non-linear controller performance through many experiments.

Effect of Feedback Methods and Ambulatory Assistive Aids on Accuracy of Partial Weight Bearing (되먹임과 보행보조도구의 형태가 30%체중지지의 정확성에 미치는 영향)

  • Park, Eun-Young;Kim, Won-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.207-214
    • /
    • 2011
  • The purpose of this study was to investigate effect of feedback methods and ambulatory assistive aids on accuracy of partial weight bearing in healthy adults. Twenty subjects were recruited and trained to 30% weight bearing of body weight (BW) using 3-point gait crutches and wheeled walker pattern. Dynamic feedback group (n=11) was received dynamic postresponse feedback and static group (n=9) received static feedback. Force plate was used to measure %BW and GAITRite used to measure gait parameters in immediately and after 3 days of training. Immediately after training, there was not significantly at 30%BW target load in dynamic group with crutch gait (p>.05). There were significantly differences in %BW according to feedback methods and ambulatory aids (p<.05). There was not significant difference between immediately and after 3 days of training (p>0.05). There were significantly differences in gait velocity and stance ratio between crutches and wheeled walker gait (p<.05). Thus, it was suggested that if possible, use crutches, training for partial weight bearing via dynamic feedback is necessary.

Analysis and Approximation of Linear feedback control problems for the Boussinesq equations

  • 최영미;이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.6-6
    • /
    • 2003
  • In this work we consider the mathematical formulation and numerical resolution of the linear feedback control problem for Boussinesq equations. The controlled Boussinesq equations is given by $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla}u+{\nabla}p={\beta}{\theta}g+f+F\;\;in\;(0,\;T){\times}\;{\Omega}$$, $${\nabla}{\cdot}u=0\;\;in\;(0,\;T){\times}{\Omega}$$, $$u|_{{\partial}{\Omega}=0,\;u(0,x)=\;u_0(x)$$ $$\frac{{\partial}{\theta}}{{\partial}t}-k{\Delta}{\theta}+(u{\cdot}){\theta}={\tau}+T,\;\;in(0,\;T){\times}{\Omega}$$ $${\theta}|_{{\partial}{\Omega}=0,\;\;{\theta}(0,X)={\theta}_0(X)$$, where $\Omega$ is a bounded open set in $R^{n}$, n=2 or 3 with a $C^{\infty}$ boundary ${\partial}{\Omega}$. The control is achieved by means of a linear feedback law relating the body forces to the velocity and temperature field, i.e., $$f=-{\gamma}_1(u-U),\;\;{\tau}=-{\gamma}_2({\theta}-{\Theta}}$$ where (U,$\Theta$) are target velocity and temperature. We show that the unsteady solutions to Boussinesq equations are stabilizable by internal controllers with exponential decaying property. In order to compute (approximations to) solution, semi discrete-in-time and full space-time discrete approximations are also studied. We prove that the difference between the solution of the discrete problem and the target solution decay to zero exponentially for sufficiently small time step.

  • PDF

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

Signal Processing for Perpendicular Recording Systems

  • Lee, Jun;Woo, Choong-Chae
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • Longitudinal recording has been the cornerstone of all two generations of magnetic recording systems, FDD and HDD. In recent, perpendicular recording has received much attention as promising technology for future high-density recording system Research into signal processing techniques is paramount for the issued storage system and is indispensable like longitudinal recording systems. This paper focuses on the performance evaluation of the various detectors under perpendicular recording system. Parameters for improving the their performance are examined for some detectors. Detectors considered in this work are the partial response maximum likelihood (PRML), noise-predictive maximum likelihood (NPML), fixed delay tree search with decision feedback (FDTS/DF), dual decision feedback equalizer (DDFE) and multilevel decision feedback equalizer (MDFE). Their performances are analyzed in terms of mean squared error (MSE) and noise power spectra, and similarity between recording channel and partial response (PR) channel.

A Feedback Linearization Control of Container Cranes: Varying Rope Length

  • Park, Hahn;Chwa, Dong-Kyoung;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-387
    • /
    • 2007
  • In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is investigated. The considered container crane involves a planar motion in conjunction with a hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback linearization control law provides a simultaneous trolley-position regulation, sway suppression, and load hoisting control. The performance of the closed loop system is shown to be satisfactory in the presence of disturbances at the payload and rope length variations. The advantage of the proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective of variations of the rope length. Simulation and experimental results are compared and discussed.

Design of discrete-time integral controllers for non-minimum phase plants via LTR techniques

  • Guo, Hai-Jiao;Ishihara, Tadashi;Takeda, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.622-627
    • /
    • 1994
  • In this paper, we discuss an application of LTR techniques to integral controller design for discrete-time non-minimum phase plant models. It is shown that the feedback property obtained by enforcing the conventional LTR procedure can be achieved by the partial LTR technique. In addition, we point out that the partial LTR technique provides more design freedom in shaping a target feedback property.

  • PDF