• 제목/요약/키워드: Partial Least Squares (PLS)

검색결과 395건 처리시간 0.037초

공조직에서의 BSC의 효과적인 운영 (An effective operation of Balanced Scorecard(BSC) in Public Organizations)

  • 김진환
    • 경영과정보연구
    • /
    • 제27권
    • /
    • pp.71-99
    • /
    • 2008
  • This study investigates the relationships between three BSC communication attributes(support of organizational culture, message valid, and knowledge sharing) and organizational learning and how that translates into relationship organizational performance in public organization. In this paper, first, past studies on BSC communication and organizational learning that identify the attributes of effective communication and organizational learning in organizational performance are reviewed. Second, a research model, key variables, and three hypotheses tested by PLS(partial least squares) are presented. The data was collected from BSC champions and managers of 53 public organizations in Korea. The results indicate, first, BSC communication (except for support of organizational culture) have not significant related to organizational performance. Therefore, H1 was not supported. Second, the structural path coefficient between support of organizational culture and message valid and organizational learning are statistically significant and in the hypothesized direction. But the knowledge sharing has not significant relationship with organizational learning. Therefore, H2 was partially supported. Third, organizational learning was significantly positively related to organizational performance. H3 was supported. Finally, organizational learning play a significantly positive role in mediating the relationship between BSC communication and organizational performance. The theoretical contributions, limitations, as well as future research directions are discussed at the end of the paper.

  • PDF

패션 사회적기업과 공익연계마케팅의 유사한 사회적가치 추구 활동에 대한 소비자 반응 연구 (Research on Consumer Responses to Similar Social Value Seeking Activities Conducted by Fashion Social Enterprises and Cause-Related Marketing)

  • 서민정
    • 한국의류학회지
    • /
    • 제43권4호
    • /
    • pp.506-520
    • /
    • 2019
  • This study first investigates relationships among fashion consumer's positive emotion toward social value seeking activities (SVSA), enterprise image (EI), enterprise-perceived quality (EPQ), and purchase intention. Additionally, it demonstrates if the confirmed relationships are different in similar SVSA between social enterprise and cause-related marketing (CRM). An online experiment using a 2 (the implementation organization of social values: social enterprise vs CRM) ${\times}2$ (SVSA: support of vulnerable group vs environmental protection) factorial design was conducted to test the established hypotheses. Participants were randomly assigned to one of four conditions, and the collected data were analyzed using a partial least squares structure equation modeling (PLS-SEM) and partial least squares multi-group analysis (PLS-MGA). The results revealed that positive emotion toward SVSA directly influenced EI and purchase intention. EI and EPQ were identified as sequential mediators linking positive emotion toward SVSA and purchase intention. A finding for similarity in consumer response paths between social enterprises and CRM highlights that social enterprises need to develop a marketing strategy distinguished from CRM.

신경회로망에 근거한 강건한 비선형 PLS (Robust nonlinear PLS based on neural networks)

  • 유준;홍선주;한종훈;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1553-1556
    • /
    • 1997
  • In the paper, we porpose a new mehtod of extending PLS(Partial Least Squares) regressiion method to nonlinear framework and apply it to the estimation of product compositions in high-purity distillation column. There have veen similar efforets to overcome drawbacks of PLS by using nonlinear-mapping ability of meural networks, however, they failed to show great improvement over PLS since they focused only in capturing nonlinear functional relationship between input data, not on nonlinear correlation inthe data set. By incorporating the structure of Robust Auto Associative Networks(RAAN) into that of previous nonlinear PLS, we can handle nonlinear correlation as well as nonlinear functional relationship. The application result shows that the proposed method performs better than previous ones even for nonlinearities caused by changing operating conditions, limited observations, and existence of meas-unrement noises.

  • PDF

부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링 (Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks)

  • 한인수;신현길
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.236-242
    • /
    • 2015
  • 고분자전해질 연료전지 스택의 성능 및 주요 운전 변수를 예측하기 위해 부분최소자승법과 인공신경망의 두 가지 데이터 기반 모델링 기법을 제시한다. 30 kW급 고분자전해질 연료전지 스택 실험으로부터 확보한 데이터를 사용하여 부분최소자승 및 인공신경망 모델들을 구성한 후 각 모델의 예측 성능 및 계산 시간을 비교하였다. 모델의 복잡성을 줄이기 위해 부분최소자승법에 기초한 VIP(Variable Importance on PLS Projections) 선정기준을 모델링 절차에 포함하여, 초기 입력변수의 집합으로부터 모델링에 필요한 입력변수들을 선정하였다. 모델링 결과, 인공신경망이 스택의 평균 셀전압과 캐소드(cathode) 출구 온도를 예측하는데 있어서, 부분최소자승법 보다 우수한 성능을 보였다. 그러나 부분최소자승법 또한 입력변수와 출력변수 간에 선형적 상관관계만을 모델링 할 수 있음에도 불구하고 비교적 만족할 만한 예측 성능을 나타냈다. 모델의 정확도와 계산속도의 요구조건에 따라 두 모델링 기법은 고분자전해질 연료전지의 설계 및 운전 분야의 성능 예측, 온라인 및 오프라인 최적화, 제어 및 이상 진단을 위해 적용될 수 있을 것으로 판단된다.

Generalization of Quantification for PLS Correlation

  • Yi, Seong-Keun;Huh, Myung-Hoe
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.225-237
    • /
    • 2012
  • This study proposes a quantification algorithm for a PLS method with several sets of variables. We called the quantification method for PLS with more than 2 sets of data a generalization. The basis of the quantification for PLS method is singular value decomposition. To derive the form of singular value decomposition in the data with more than 2 sets more easily, we used the constraint, $a^ta+b^tb+c^tc=3$ not $a^ta=1$, $b^tb=1$, and $c^tc=1$, for instance, in the case of 3 data sets. However, to prove that there is no difference, we showed it by the use of 2 data sets case because it is very complicate to prove with 3 data sets. The keys of the study are how to form the singular value decomposition and how to get the coordinates for the plots of variables and observations.

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.

Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng

  • Lee, Mee Youn;Seo, Han Sol;Singh, Digar;Lee, Sang Jun;Lee, Choong Hwan
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.413-423
    • /
    • 2020
  • Background: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. Methods: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. Results: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. Conclusion: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

수도권 미분양아파트 구매의사결정 영향요인 분석 (A Study on the Decision-making Factors of Living-in Idea into Unsold Apartment of Metropolitan Area)

  • 탁정호;노정현
    • 한국콘텐츠학회논문지
    • /
    • 제17권4호
    • /
    • pp.247-255
    • /
    • 2017
  • 본 연구는 미분양아파트 구매의사결정에 있어 고려해야하는 특성요인을 규명하고 구매자 유형에 따른 차이를 비교 분석하였다. 구매의사결정에 영향을 미치는 요인을 분석하기 위해 선행연구 고찰을 통하여 특성을 종합하고 PLS(Partial Least Squares)회귀분석을 활용하여 그 영향을 실증하였다. 또한 구매자 유형별 특성을 비교하기 위해 분석대상을 미분양아파트 수요자인 입주자와 공급자인 건설사로 구분하여 설문을 진행하였다. 분석결과 입주자는 내부요인(1.141), 조건완화(1.114), 환경요인(1.107), 사회적 요인(1.048), 외부요인(1.030), 교육환경요인(1.010)의 의사결정요인을 중시하는 것으로 나타났으며 건설사의 경우 사회적 요인(1.401), 환경요인(1.251), 조건완화(1.133)의 의사결정요인이 중요한 것으로 도출되었다. 또한 공통적인 의사결정요인으로 조건완화, 사회적요인, 환경요인이 도출되었다.

다변량 분석법을 이용한 Tryptophan과 Tyrosine의 형광분광법적 정량 (Simultaneous Determination of Tryptophan and Tyrosine by Spectrofluorimetry Using Multivariate Calibration Method)

  • 이상학;박주은;손범목
    • 대한화학회지
    • /
    • 제46권4호
    • /
    • pp.309-317
    • /
    • 2002
  • 형광분광법에 의하여 주성분 회귀분석(principal component regression, PCR)과 부분 최소자승법(Partial least squares, PLS)을 이용하여 아미노산(Tryptophan and Tyrosine)을 동시에 정량하는 방법에 대하여 연구하였다. 아미노산 혼합물의 형광 스펙트럼은 들뜸파장을257nm로 고정하여 측정하였다. 두 가지 아미노산이 서로 다른 농도로 혼합되어 있는 32개의 시료용액을 280nm∼500nm 범위에서 스펙트럼들을 얻었고 이를 이용하여 PCR과 PLS회귀모델을 얻었다. 두 가지 아미노산이 서로 다른 농도로 포함된 6개의 외부검정용 시료들의 스펙트럼들을 이용해서 회귀모델의 적합성을 검정하기 위하여 외부검정용 시료의 농도를 계산하였다. 계산된 농도를 이용하여 relative standard error of prediction($RSEP_a$)를 얻었고 같은 방법으로 overall relative standard error of prediction($RSEP_m$) 도 구하였다

근적외선을 이용한 온라인 석탄 성상분석 방법 (The Technology for On-line Measurement of Coal Properties by using Near-Infrared)

  • 김동원;이종민;김재성;김학종
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.596-603
    • /
    • 2007
  • 실시간 온라인 석탄 성상분석은 효율적인 석탄 화력발전소 운영을 위해 반드시 필요한 기술이다. 온라인 석탄 성상분석 기술 개발을 위해 다변량 분석기법을 사용하여 확산 반사방식을 통해 얻은 석탄의 근적외선 스펙트럼과 석탄 성상(%)[수분, 회분, 휘발분, 고정탄소, 탄소, 수소, 질소, 산소, 황], 발열량(kcal/kg)간의 관계를 조사하였다. 현재 석탄 화력발전소에서 사용하는 40여종의 석탄에서 얻은 근적외선 스펙트럼을 전처리[2차 미분, MSC(multiplicative scatter correction)]를 통해 물리적 영향을 최소화하여 석탄 성상과의 관계를 PLS(partial least squares regression), PCA(principal component analysis)의 chemometrics 기법을 이용하여 정량 분석하였다. 분석 결과 본 기법을 통해 근적외선 스펙트럼으로 석탄 성상 중 회분, 질소 그리고 황을 제외한 나머지 성분에 대해 분석이 가능함을 확인할 수 있었다. 또한 PC(PLS component)의 값을 이용하여 석탄의 종류를 구별한 다음, 다변량 통계기법을 사용하여 정량 분석한 결과, 전체 석탄을 이용해서 정량 분석한 결과에 비해 비교적 좋은 결과를 얻었다. 수분, 발열량이 실시간으로 분석 가능하여 보다 효율적인 석탄 화력발전소 운영이 가능할 것으로 예상된다.