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Abstract In the paper. we propose a new method of extending PLS (Partial Least Squares) regression method to nonlinear framework
and apply it to the estimation of product compositions in high-purity distillation column. There have been similar efforts to overcome
drawbacks of PLS by using nonlinear-mapping ability of neural networks. however. they failed to show great improvement over PLS
since they focused only on capturing nonlinear functional relationship between input and output data. not on nonlinear correlation in the
Jata set. By incorporating the structure of Robust AutoAssociative Networks (RAAN) into that of previous nonlinear PLS. we can han-
i nonlinear correlation as well as nonlinear functional relationship. The application result shows that the proposed method performs
octter than previous ones even for nonlinearities caused by changing operating conditions. limited observations. and existence of meas-

uarement Noises.
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1. Introduction

Recently, great advances have been made in the development of the
analvtical instrumentation and sensors to provide on-line measurements.
but the new sensors have not been preferred vet because they still suffer
from large measurement delays, narrow operating conditions. high in-
vestment/maintenance costs. low reliability and so on.

For these reasons, there have been attempts to overcome the problems
presented by the lack of on-line quality measurement because infrequent
product quality measurement imposes severe limitations on achieving
desirable control performance. In that attempts. state estimation method
and soft-sensor techniques have been proposed. aimed at inferring diffi-
cult-to-measure and unmeasurable quality variables {1]. However. since
the former is highly dependent upon the availability of a representative
mathematical model and the measurement of secondary variables with
low noise corruption, data based models that are based on input-output
data pair are frequently used as an alternative [1]. These non-mechanistic
model approaches can form the basis of soft-sensors. In these non-
mechanistic models, regression technique is often used to infer the rela-
tionship between input and output data. It is shown that partial least
squares (PLS) provides a general method for building empirical inferen-
tial models when one has data on a large number of process variables and
when these variables are highly correlated with one another. However,
since PLS is linear method, there are severe limitations especially when
correlation in the data set and functional relationship between input and
output data are nonlinear.

Another modeling method employed in data based models is artificial
neural networks. It has been shown. using the Stone-Weierstrass theorem.
that a two-layer feedforward network with an arbitrary large number of
nodes in the hidden layer can approximate any continuous function to a
desired accuracy [2]. and the direct neural networks approach performs
much better than linear techniques in some cases.

However. it has similar problems to the ordinary least-squares method
particularly in the case that process has limited data. The number of
weights in a multilayer network of m inputs and p outputs could be larger
than the number of observations. Therefore. some of the weights cannot
be uniquely determined from the observed data. With problems men-
tioned above there have been efforts to take advantages of the two meth-
ods-PLS and neural networks [3.4). but these efforts failed to show great
improvement over standard linear PLS for most cases because they ignore
nonlinear correlation in the data set.

In this paper. we present a new method of integrating PLS and neural
networks and apply it to estimating the product compositions in high-

purity distillation columns using multiple temperature measurements. The
method uses the universal approximation property of neural nctworks to
extend the standard lincar PLS modeling method to a nonlinear frame-
work. The resulting nonlinear PLS model can capture nonlinear function-
al relationship between input and output data without the loss ot PL.S’s
generalization property. In addition. we incorporate the structure of Ro-
bust AutoAssociative Networks (RAAN) into this nonlinear PLS so that
by use of the nonlinear PCA ability of RAAN. we can capture nonlinear
correlation in the data set without any difficulties. The Robust Nonlinear
PLS (RNPLS) that we propose exceeds cxisting neural networks com-
bined with PCA as well as standard linear PLS in terms of nonlinear-
mapping ability, noise suppression. and robustness to sensor failure and
capturing nonlinear correlation.

2. Current approaches for inferential model building

In the followings. current methodologies used for obtaining inferential
model based on input-output data are presented. Here we consider build-
ing only static inferential model. Static modeling is quite simple since it
requires little modeling efforts compared to dynamic one. and for special
cases one of which is our example discussed later. it can also model the
dynamic behavior although the dataset used to obtain the model is static.
Undoubtedly. the methodologies can also be used to build dynamic model
as well as static one.

2.1 PLS(Partial Least Squares or Projection to Latent Structures)

Inferential model building is based on a reference (calibration) data set
which can be separated into two matrices: a matrix X associated with the
process measurements and a matrix Y associated with the quality meas-
urements which are not generally available in on-line. The objective is to
develop an inferential model that can predict current (or future) values of
quality variables using current (or future) measurements of the process
variables.

Here. we briefly explain basic idea of PLS. For detailed algorithm and
other information of PLS. refer to Hoskuldsson [3].

In PLS regression. the latent variables are determined in order have to
the largest covariance with the dependent variables. In this way. when a
vector is not needed to describe a specific variable. the vector will not be
used in the estimation of the variable. Therefore it is possible to describe
a variable using few components.

The application area of PLS is quite wide - trom analytical chemistry to
chemical engineering. In chemical engineering. the most successful appli-
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cation is composition estimation for distillation column. However, since it
is linear method, using PLS in nonlinear problems can sometimes be in
adequate. To avoid this severe limitation, the methods combining neural
networks and PLS have began to propose.

2.2 Neural networks/PLS(NNPLS)

Many authors have proposed new methods combining PLS and neural
networks to handle nonlinearity as well as correlation between data since
neural networks have similar problems as ordinary least-squares in the
case of correlated inputs and limited data, although it shows better per-
formance than PLS. The early ones are to combine Principal Component
Analysis (PCA) with neural networks [6] and the recent ones are to inte-
grate the PLS regression and neural networks to formulate an approach
which can handle nolinearity, correlated inputs and limited observations
[3,4].

For example. Holcomb and Morari [4] proposed a structure of NNPLS
(Fig. 1) and its training algorithm.

The Full algorithm is :

1. Perform PCA to decide number of directions.

2. Initialize feature layer with PCA directions.

3. Perform training on output layer; make no changes to feature
layer.
Perform training with full networks including output layer.

5. If performance unsatisfactorily. choose new feature layer initial

values and go to step 3.

However, their method as well as other NNPLS failed to show great
improvement in their performance over linear PLS for most cases and
showed nearly same performance to each other. The reason is that they
focused only on capturing nonlinear functional relationship between input
and output data, not on nonlinear correlation in the data set, which is
another important drawback of linear PLS.

Input Feature Hidden Output
units units units units

Feature layer

Output layer

| New learning rule

|

Fig. 1 Neural networks/PLS structure proposed by Holcomb and Morari
[4]. ¢ s and diagonals denote sigmoidal nodes and linear nodes respec-
tively.

Backpropagation learning rule

3. Robust Nonlinear PLS(RNPL.S)

3.1 Robust Autoassociative Networks

Nonlinear principal component analysis(NLPCA) is a novel technique
for multivariate data analysis, similar to PCA. NLPCA. like PCA. is used
to identify and remove correlations among problem variables as an aid to
dimensionality reduction, visualization. and exploratory data analysis.
While PCA identifies only linear correlations. NLPCA uncovers both
linear and nonlinear correlations. without restriction on the character of
the nonlinearities in the data. Kramer [7] shows that five layer feedfor-
ward networks(not three layer networks) is adequate for NLPCA and
proposes guideline of determining number of hidden nodes. In addition.

when it is trained properly, it can be used to preprocess data so that sen-
sor-based calculations can be performed correctly even in the presence of
large sensor noises, biases, and failures. Due to this property, Kramer
names it Robust AutoAssociative networks (RAAN). Its detailed structure
is given in Fig. 2.

|
|

INPUT  MAPPING BOTTLE- DEMAPPING OUTPUT
LAYER LAYER NECK LAYER LAYER r
LAYER

Fig. 2. Networks architecture for NLPCA using autoassociative networks.
¢ ’s and diagonals have same meaning as in Fig. 1.
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Fig. 3. Proposed RNPLS’s architecture
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3.2 RNPLS

As mentioned above. using linear PCA in nonlinear problems can
sometimes be inadequate. For example, it has been shown that if PCA is
used in nonlinear problems, minor components do not always consist of
noise or unimportant variance, but they contain important information[8].
If the minor components are kept. the PCA might contain too many com-
ponents to be useful for solving an application problem. NLPCA can
handle this problem with fewer components because it estimates a curve
or surface passing through the middle of the observations. Therefore
incorporating structure of RAAN into that of previous NNPLS, it can
capture nonlinear correlations as well as show better performance with
fewer components than previous one. Resulting structure of RNPLS is
given in Fig. 3.

4. Examples - Composition estimator

As mentioned above. same Ssituation occurs in distillation column
control. Therefore the most popular alternative to analyzers is to use
secondary measurements, which is able to infer product composition.
Since tray temperature measurement is reliable, inexpensive and has
negligible measurement delays. it has been frequently used. Although, for
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the binary column at constant pressure. the temperature at the column end
is an exact indicator of the product composition, the use of a single tem-
perature at the column end section is generally not reliable for many
reasons. In late 80°s, multivariable regression technigues (PCR and PLS)
began to get an attention within community and it was found that by using
all available temperature measurements. PLS-based estimator shows good
performance compared to other estimators such as the dynamic Kalman
filter and the static Browsilow inferential estimator [1]. It also enhances
the performance through the effective transformation and scaling of the
process variables but makes the estimators sensitive to noise {1.9].

In following sections, we will present the definition of composition
estimator, evaluation criteria developed to evaluate estimator’s pertorm-
ance. and variable transformation techniques used to reduce nonlinearity.

4.1 Problem Definition.
Consider the binary distillation column with constant pressure, and feed
and reflux stream as saturated liquid. Then specifying each value of feed

composition =, . distillate composition y, . and bottom product com-

position x, yields unique steady-state profile of the tray temperatures.

The objective is to obtain the best estimate y of the product composi-
tions using these steady-state tray temperatures, & . The general form of
the estimator may be written as

y = K(8)

.
where y = ()'/D ;‘n) and the K( *) becomes constant matrix for PLS

and nonlinear function matrix for NNPLS and RNPLS. For binary distii-
lation column with n-trays, the dimension of matrix K is 2 X (n+1) and the
problem is to find optimal values of 2(n+1) parameters.

4.2 Evaluation criteria
Prediction Error Sum of Squares (PRESS) (Montgomery. 1992) is used
to evaluate the absolute performance :

N
PRESS = (3 -»)
1=
4.3 Variable transformation techniques
Since the composition and temperature profiles are nonlinear functions
of the operating variables, many attempts have been made to overcome
this nonlinearity. A simple and efficient way is to use nonlinear transfor-
mations on each variable. Logarithmic transformation of the product
compositions has been proposed by several authors [9.10] as an effective
way to linearize the static as well as dynamic response. For binary mix-
tures the following transformation is used :
Y = n| 2

D
-y,
where y, is the distillate composition. Various transformation tech-
niques were investigated by Mejdell and Skogestad [9] and it was pro-
posed that logarithmic transformation of both the composition and the
temperatures improve the estimates by linearizing these responses and
profiles. The proposed transtormation is

0-6,

L=1In

g, -0
where ¢ is the tray temperature. and 6, and 0, are some reference
temperature. One may use the temperatures at the column ends when

there are two additional measured reference temperatures. or ¢, and

8,, are the boiling temperatures of the pure light and heavy components.

5 b .
T, and T, respectively.

4.4 Example column

The column has |5 theoretical stages with total condenser and reboiler.
The feed stream enters the column at stage 8 as saturated liquid. Binary
mixture case consisting of one light and heavy key component is consid-
ered. The steady state and dynamic simulations of the column are per-
formed using simulator, HYSYS™. The steady state and dynamic simu-
lation conditions for the case are given in Table 1. and 2. respectively.

Table 1. Steady-state simulation conditions

L. Variations in steady-
Base case condition .
state reference set
Inputs
Feed flowrate 36 m'/hr Constant
Feed temperature 73 °C 71~755 C
Feed composition
Methanol 50 % 40 ~ 60 %
Water 50 % 40 ~ 60 %
Outputs
Distillate
Methanol 99 % 97 -~ 99.667 %
Water 1% 0333 ~3%
Bottom
Methanol % 0.333~3%
Water 99 % 97 ~99.667 %
Table 2. Dynamic simulation conditions
Tray size
Diameter 10.1 cm
Weir height 1 cm
Condenser vessel volume 10.1 L
Reboiler vessel volume 81
Tower volume 20L
Cooling volume 46L
Liquid holdup time S min
Setpoint change
Top 97 % — 99% - 99.6 %
Bottom 3% = 1% -~ 03%

4.5 Simulation and result

Using HYSYS™ and Table 1 as a simulation condition. we obtain 32
reference data and build 4 different models - PLS without transforma-
tion(PLS). PLS with transformation(PLS W/ TRNS). NNPLS. and
RNPLS. In transformation for PLS W/ TRNS, we use logarithmic trans-
formation of both the composition and the temperatures as Mejdell and
Skogestad [9] proposed. And NNPLS model is obtained using Holcomb
and Morari’'s method[4]. To test dynamic performance of models. we
obtain dynamic data from Table 2. For both cases. we prepare noisy data
which contain three different noise level (£0.1°C. £02C. =0.37C)
to show robustness of models. to produce these noisy data. we add nor-
mally distributed noise with magnitude 0.1. 0.2. and 0.3 to reference data.
Also to test estimators’ own robustness to noise. we don’t train NNPLS
and RNPLS to these noisy data..

As a mode! building result. PLS and PL.S W/ TRNS have 4 and 3
components respectively and networks structure for NNPLS and RNPLS
are (16-3-3-2) and (16-25-2-3-2).

4.5.1 Static case

Static performances of models are given in Fig. 1 and 2. From the fig-
ures. when there is no noise in data PLS shows the worst performance and
NNPLS and RNPLS show the best performance and RNPLS has fewer
compoenents than NNPLS by 1. However. as the noise level increases.
performances of PL.S W/ TRNS and NNPLS become worse whereas
RNPLS does not. This is because RAAN has noise suppression ability at
the bottleneck layver [7]. From the view of prediction power and robust-
ness. RNPLS is the best for static case.
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performance is inevitable. The result of dynamic performance test using

No noise 0.1 noise 0.2 noise 0.3 noise knowledged.

’ dynamic data (setpoint change data) shows that prediction power and
| Top Composition { robustness of RNPLS exceeds all others. Especially for top composition
‘ i ‘7 estimation which is highly correlated, RNPLS performs better than PLS
] J i W/ TRNS and NNPLS. This can be explained that RAAN captures non-
i 1e-4 ‘ i H . \ linear correlation, which cannot be captured by others since it is minor but
i | 1 has important information about system’s dynamics.
[ w i
[ 0 les ] [
| & | |
| = { - ‘ i 5. Conclusion
1e-6 ez PLS |
| — PLS W/ TRN:} i .
j g E g:gtg . | In this work, a new method for extending linear PLS to nonlinear
Te-7 il | ; J framework is proposed. Proposed method (RNPLS) can capture nonlinear
No noise 0.1 noise 0.2 noise 0.3 noise correlations with fewer components in addition to nonlinear mapping and
' application result show that its prediction power surpasses others even for
Bottom Composition dynamic estimation and existence of measurements noise. Especially
S, l when it is used for control, only RNPLS can guarantee good control
, * performance since it shows excellent performance for dynamic case
1e-5 _ _ ‘ compared t others.
0
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Fig. 5. Dynamic performance of estimators to dynamic data

4.5.2 Dynamic case

For most cases, dynamic performance of estimator is more important
than the static because inferential mode! is frequently used for control
purpose. Therefore, in addition to good static pertormance. good dynamic
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