• 제목/요약/키워드: Partial Elasticity

검색결과 71건 처리시간 0.02초

제주-내륙 간 국내선 항공여객수요모형 및 탄력성의 추정 (Estimation of Air Travel Demand Models and Elasticities for Jeju-Mainland Domestic Routes)

  • 백승한;김성수
    • 대한교통학회지
    • /
    • 제26권1호
    • /
    • pp.51-63
    • /
    • 2008
  • 제주-내륙 간 국내선 항공여객수요는 여가통행의 대표적인 시계열 특성인 1년을 주기로 증감을 반복하는 전형적인 계절변동 패턴을 보인다. 본 연구는 10년(1996${\sim}$2005) 동안의 제주-내륙 간 월별 시계열 총량자료를 이용하여 단순시계열모형과 부분조정모형 및 이들 모형별 탄력성(소득, 운임)을 추정하였다. 탄력성 추정결과 단순시계열모형의 경우 소득탄력성은 탄력적(1.55), 운임탄력성은 비탄력적(-0.49${\sim}$-0.59)으로 추정되었다. 부분조정모형의 경우 소득탄력성은 단기에는 비탄력적(0.51), 장기에는 탄력적(1.88)으로 추정되었으며, 운임탄력성은 장 단기 모두 비탄력적으로 추정되었으나, 단기(성수기:-0.13, 비수기:-0.20)보다는 장기(성수기:-0.48, 비수기:-0.72)가 보다 더 탄력적으로 추정되었다.

관상동맥질환 위험정도와 혈관탄성의 관계에서 치료지시이행의 매개효과: 경피적 관상동맥 중재술 환자 대상 (Comparison of Vessel Elasticity according to Risk Factors for Coronary Artery Disease, and the Mediating Effects of Treatment Compliance among Patients with Percutaneous Coronary Intervention)

  • 여가람;성경미
    • 동서간호학연구지
    • /
    • 제22권1호
    • /
    • pp.32-40
    • /
    • 2016
  • Purpose: This study aimed to provide basic data for vascular health of patient who underwent percutaneous coronary intervention (PCI) by verifying the mediating effect of compliance in the relationship between risk level of coronary artery disease (CAD) and blood vessel elasticity. Methods: This is a descriptive study with 115 patients, who underwent the PCI a year ago and visited in the cardiology department from January to March, 2015. The risk level of CAD, blood vessel elasticity and the compliance were measured. For data analysis, SPSS/WIN 21.0 and AMOS (IBM) 21.0 were used. Results: There were a positive correlation with blood vessel elasticity score (i.e. inelasticity of the blood vessel wall) (r=.189) and a negative correlation with compliance (r=-.658) in mediating effect of risk level of CAD. There was a negative correlation between compliance and blood vessel elasticity (r=-.482). The direct effect (${\beta}=-.226$), indirect effect (${\beta}=.415$) and total effect (${\beta}=.186$) of mediating effect of risk level of CAD on blood vessel elasticity were significant. Compliance had a partial mediating effect of risk level of CAD on blood vessel elasticity. Conclusion: The results of this study suggest that managing and preventing moderating effect of risk level of CAD on compliance is helpful in restoring blood vessel elasticity.

폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용 (Characterization of the mixed soil with waste and application to geotechnical field)

  • 이기호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 지반환경 및 준설매립에관한 학술세미나
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

비선형설계모형을 이용한 대중교통요금구조평가 (A Nonlinear Programming Model for Evaluating Public Transit Fare Structure)

  • 조중래
    • 대한교통학회지
    • /
    • 제7권2호
    • /
    • pp.17-27
    • /
    • 1989
  • A nonlinear programming model for evaluating public transit fare system is proposed. The model finds transit fare level and the structure that maximizes gross fare-box revenue subject to constraints on minimum ridership and the form of the fare equations. It is assumed that the demand for transit is a function of fare and its own-fare elasticity. It is assumed that the demand for transit is a function of fare and its own-fare elasticity. It is also assumed that the conditions including fare of the other modes are unchanged ; i.e., partial equilibrium. Empirical study has been performed for the case of Seoul subway system. This study includes an analysis of fare structure ; flat system and distance-based fare system. Sensitivity and comperative static analysis for elasticity has been also demonstrated.

  • PDF

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

A general method of analysis of composite beams with partial interaction

  • Ranzi, G.;Bradford, M.A.;Uy, B.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.169-184
    • /
    • 2003
  • This paper presents a generic modelling of composite steel-concrete beams with elastic shear connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear connection slip capacity. This application is possible because the governing differential equations are set up and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a statement of the appropriate constants of integration that are generated in the solution of the linear differential equations. The method is applied in the paper for the solution of the well-studied behaviour of simply supported beams with partial interaction, as well as to provide solutions for a beam encastr$\acute{e}$ at its ends, and for a propped cantilever.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.1001-1013
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.

Non-stationary mixed problem of elasticity for a semi-strip

  • Reut, Viktor;Vaysfeld, Natalya;Zhuravlova, Zinaida
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.77-89
    • /
    • 2020
  • This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-strip. The initial problem is reduced to one-dimensional problem with the help of Laplace's and Fourier's integral transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform's domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the deriving of the general solution. The partial solution is constructed with the help of Green's matrix-function, which is searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state of the semi-strip is investigated for the different values of the frequency.