• Title/Summary/Keyword: Partial Analysis

Search Result 4,796, Processing Time 0.033 seconds

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF

A Study of the Noise Discrimination by use of Different Sensors and Pulse Analysis Algorithms in Measuring Partial Discharge (부분방정 측정에서 센서 및 펄스 분석 알고리즘에 따른 노이즈 제거 연구)

  • Kim, Ji-Hong;Koo, Ja-Yoon;Kim, Jeong-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.183-188
    • /
    • 2006
  • Abstract - In order to investigate the possibility of separating PD(partial discharge) and noises through the pulse analysis by use of a HFCT, pulse shapes measured by a resistive sensor and a HFCT were analyzed and adequate PA(pulse analysis) algorithms were studied. For the purpose, the HFPD detection and PA system has been developed. Also void discharges and air corona were adopted as the artificial defect and noises, respectively. As a result, it is possible to separate partial discharges and noises through the PA method using the $100kHz{\sim}20MHz$ frequency range HFCT. It is expected to apply the developed system to on-site PD measurements for the electric equipments.

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

Analysis of Thermal Characteristics for the Fire Risk Assessment According to Partial Disconnection on the VCTF and IV Electric Wire (VCTF와 IV전선의 반단선에 의한 화재위험성 평가를 위한 열적특성 해석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Park, Jong-Young;Park, Young-Ho;Lee, Hyung-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Many researches on fire risk for normal electric wiring have been pursued in advanced countries such as the USA and Japan, but comparative studies of the partial disconnection and normal state of electric wires have not been conducted. Detection system for the cause of partial disconnection is not developed and prevention countermeasure for electrical fire by the cause is not effective. Therefore, in this paper, partial disconnection characteristics on electric wires were derived and analyzed by experiment and electrical-thermal finite element method(Flux 3D) on the model wires which consist of VCTF(PVC insulated PVC sheathed Cap Tyre Flexible Cord, KS C 3304) and IV(lndoorwire PVC, KS C 3302). VCTF is used in wiring portable electric appliances and the IV is used indoors. Interrelationships between partial disconnection premonitory symptom and current were derived and analyzed by the characteristics based on experiments and thermal analysis for electric wire according to current under normal state and 200% overload state of rated current.

Application of an integro-differential equation to the analysis of geotechnical problems

  • Poorooshasb, H.B.;Alamgir, M.;Miura, N.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.227-242
    • /
    • 1996
  • An important class of problems in the field of geotechnical engineering may be analyzed with the aid of a simple integro-differential equation. Behavior of "rigid" piles(say concrete piles), "deformable" piles(say gravel piles), pile groups, pile-raft foundations, heavily reinforced earth, flow within circular silos and down drag on cylindrical structures (for example the crusher unit of a mineral processing complex) are the type of situations that can be handled by this type of equation. The equation under consideration has the form; $$\frac{{\partial}w(r,\;z)}{{\partial}z}+f(z){\int}^z_0g({\xi})(\frac{{\partial}^2w(r,\;{\xi})}{{\partial}r^2}+\frac{1}{r}\frac{{\partial}w(r,\;{\xi})}{{\partial}r})d{\xi}+h(r,\;z)=0$$ where w(r, z) is the vertical displacement of a soil particle expressed as a function of the polar cylindrical space coordinates (r, z) and the symbols f, g and h represent soil properties and the loading conditions. The merit of the analysis is its simplicity (both in concept and in application) and the ease with which it can be expressed in a computer code. In the present paper the analysis is applied to investigate the behavior of a single rigid pile to bedrock. The emphasis, however, is placed on developing the equation, the numerical techique used in its evaluation and validation of the technique, hereafter called the ID technique, against a formal program, CRISP, which uses the FEM.

Design and Analysis of a Wrist Rotation Module Prototype for Partial Hand Amputees: Effects on Upper Limb Movement (부분 손 절단자를 위한 프로토 타입의 손목 회전 모듈 디자인 제안과 상지 움직임의 영향 분석)

  • Seoyoung Choi;Wonwoo Cho;Keehoon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2023
  • Most partial hand amputees experience limited wrist movement, which hinders the efficient functioning of upper limb, affecting hand-to-use coordination and the usability of the prosthetic hand. This limitation can lead to secondary musculoskeletal issues due to repetitive compensatory movement patterns. However, current partial hand prosthetic lack rotational wrist movement due to challenges in accommodating various hand shapes and limited space. In our study, we proposed a prosthetic hand with a wrist rotation module for partial hand amputees, aiming to reduce compensatory movement. To validate the proposed wrist rotation module, we conducted motion analysis during reach-to-grasp task. Furthermore, during the Jebsen-Taylor hand function test, we evaluated both the effect on upper limb movement and the usability of the prosthetic hand, comparing configurations with and without the wrist rotation module. The results showed that the prosthetic hand equipped with rotational wrist movements reduces compensatory movements and promotes efficient upper limb movement patterns. This finding highlights the value of incorporating a wrist rotation module in prosthetic hands to improve upper limb movement for partial hand amputees.

Integrated Partial Sufficient Dimension Reduction with Heavily Unbalanced Categorical Predictors

  • Yoo, Jae-Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.977-985
    • /
    • 2010
  • In this paper, we propose an approach to conduct partial sufficient dimension reduction with heavily unbalanced categorical predictors. For this, we consider integrated categorical predictors and investigate certain conditions that the integrated categorical predictor is fully informative to partial sufficient dimension reduction. For illustration, the proposed approach is implemented on optimal partial sliced inverse regression in simulation and data analysis.

Analysis of Partial Discharge Patterns in the Pumped Storage Generator Stator Windings (양수발전기 고정자 권선에서 부분방전 패턴의 분석)

  • Kim, Hee-Dong;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1015-1018
    • /
    • 1999
  • Partial discharge patterns were analyzed in the pumped storage generator stator winding. These were measured using partial discharge analyzer(PDA) and digital partial discharge detector(PDD). Slot discharge was discovered in phase A. Discharges at conductor surface were occurred in phase B and in Phase C. Partial discharge patterns from on-line PDA system were compared with those off-line PDD system. The results of two systems are very same in phase A, B and C.

  • PDF

Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis

  • Choi, Jungho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • The cargo handling system, which is composed of a fuel gas supply unit and cargo tank pressure control unit, is the second largest power consumer in a Liquefied Natural Gas (LNG) carrier. Because of recent enhancements in ship efficiency, the surplus boil-off gas that remains after supplying fuel gas for ship propulsion must be reliquefied or burned to regulate the cargo tank pressure. A full or partial liquefaction process can be applied to return the surplus gas to the cargo tank. The purpose of this study is to review the current partial liquefaction process for LNG carriers and develop new processes for reducing power consumption using exergy analysis. The developed partial liquefaction process was also compared with the full liquefaction process applicable to a LNG carrier with a varying boil-off gas composition and varying liquefaction amounts. An exergy analysis showed that the Joule-Thomson valve is the key component needed for improvements to the system, and that the proposed system showed an 8% enhancement relative to the current prevailing system. A comparison of the study results with a partial/full liquefaction process showed that power consumption is strongly affected by the returned liquefied amount.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.