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Abstract

In this paper, we propose an approach to conduct partial sufficient dimension reduction with heavily unbal-

anced categorical predictors. For this, we consider integrated categorical predictors and investigate certain

conditions that the integrated categorical predictor is fully informative to partial sufficient dimension reduc-

tion. For illustration, the proposed approach is implemented on optimal partial sliced inverse regression in

simulation and data analysis.

Keywords: Integration, partial dimension subspaces, sufficient dimension reduction, regression, unbal-

anced categorical predictors.

1. Introduction

Sufficient dimension reduction(SDR) in regression of Y |X ∈ Rp replaces the original p-dimensional

many-valued or continuous predictors X by a lower-dimensional linear projection predictor without

loss of information about selected aspects of the conditional distribution of Y |X. Equivalently, SDR

pursues to find the minimal subspaces Sf(X) satisfying

Y f(X)|PSf(X)
X, (1.1)

where stands for independence, f(X) characterizes the selected aspects of Y |X, PS represents

the orthogonal projection onto a subspace S with usual inner-product space, and dim{Sf(X)} ≤ p.

We call the lower-dimensional linear projection predictor PSf(X)
X sufficient predictors.

The form of f(X) in (1.1) is determined according to the selected aspects of Y |X. If the conditional

distribution itself is of main interest in regression, f(X) becomes X. And, such minimal subspace

is called the central subspace SY |X (Cook, 1998). Then PSY |XX can replace X without loss of

information on Y |X. If the main interest is placed on the first conditional moment E(Y |X),

then f(X) becomes E(Y |X), and the related minimal subspace is called the central mean subspace

SE(Y |X) (Cook and Li, 2002). In this case, PSE(Y |X)
X can replace X without loss of information on
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E(Y |X). When the primary focus is given in the first k conditional moments of Y |X, f(X) is equal

to {E(Y |X),M (2)(Y |X), . . . ,M (k)(Y |X)}, and we call the minimal space the central kth-moment

subspace S(k)

Y |X (Yin and Cook, 2002), where M (k)(Y |X) = E[{Y −E(Y |X)}k|X] for k ≥ 2. In this

context, PS(k)
Y |X

X can replace X without loss of information on the first k conditional moments.

When a categorical predictor W with c levels is involved in regression, the definition of SDR intro-

duced above is not directly applicable. In such case, we pursue partial SDR to reduce dimensions

of many-valued or continuous predictors X alone conditioning W . Then a related conditional inde-

pendence statement for partial SDR is as follows:

Y f(X,W )|(PSf(X,W )
X,W ), (1.2)

Similarly to (1.1), in partial SDR context, the related minimal subspaces satisfying (1.2) are

called the partial central subspace SW
Y |X (Chiaromonte et al., 2002), the partial central mean sub-

space SW
E(Y |X) (Li et al., 2003) the partial kth-moment subspace SW (k)

Y |X (Yoo, 2009) depending

on the selected aspects of Y |X, and the corresponding forms of f(X,W ) are X, E(Y |X,W )

and {E(Y |W,X),M (2)(Y |X,W ), . . . ,M (k)(Y |X,W )} respectively, where M (k)(Y |X,W ) = E[{Y −
E(Y |X,W )}k|X,W ] for k ≥ 2.

When two or more categorical predictors W = (W1, . . . ,Wq) with q ≥ 2 are involved, we need to

do a full hierarchical categorization of W. For example, supposing that two categorical predictors

of W1 and W2 are involved in regression and each has two levels of 0 and 1, we can replace them by

a new categorical variable WFH with four levels: WFH = 0, if (W1,W2) = (0, 0); WFH = 1, if (0,1);

WFH = 2, if (1,0); WFH = 3, if (1,1). We will call such WFH as a fully hierarchically categorized

predictor. Considering q categorical predictors with each ci levels, i = 1, . . . , q, WFH will have

totally Πq
i=1ci levels.

One issue possibly arising with many categorical predictors is heavily unbalanced within some levels

of WFH. In practice, this must be cause of concern in methodological application for partial SDR

due to too few data in some categories of WFH.

This article suggest an approach to conduct partial SDR under heavily unbalanced categorical

predictors. For this, we will take integration of some levels of WFH, and define integrated hierar-

chical predictor WIH. We will investigate conditions that WIH is fully informative to partial SDR.

Then, with WIH under the conditions, usual partial SDR methodologies can be directly applied for

dimension reduction of many-valued or continuous predictors.

To avoid interrupting the discussion, several notations are defined. A set of many-valued and

continuous predictors will be denoted asX = (X1, . . . , Xp)
T, while a set of categorical predictors will

be defined as W = (W1, . . . ,Wq)
T. We assume throughout that the data (Yi,Xi,Wi) are a random

sample for (Y,X,W) for i = 1, 2, . . . , n. A generic pair of (Yw,Xw) indicates a subpopulation of

(Y,X) such that (Y,X)|W = w, and a regression of Yw|Xw, equivalently, Y |(X,W = w), will be

called a conditional regression within the subpopulation of W = w. A notation of S(B) stands for

as a subspace of Rp spanned by the columns of a p× r matrix B.

2. Integrated Categorization

2.1. Integration of categorical predictors

Consider a regression of Y |(X ∈ Rp,W), where W = (W1, . . . ,Wq)
T and q ≥ 2. Now, we assume

that, in one of Wis, at least, data is heavily unbalanced. That is, certain levels of Wis contain few
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observations. Therefore, some levels ofWFH will have even fewer or no observations. For illustration

purposes, we consider W and WFH demonstrated in Section 1: W = (W1,W2) with each having

two levels; WFH = 0, if (W1,W2) = (0, 0); WFH = 1, if (0,1); WFH = 2, if (1,0); WFH = 3, if (1,1).

Here suppose that the number of observations for W1 = 1 is too small. Under this circumstances

usual application of partial SDR methods introduced in Section 1 is not plausible.

To overcome this deficit, as an alternative, we meaningfully integrate levels of WFH to have few

observations and construct an integrated categorical predictor WIH. In the example above, the

following WIH can be considered: WIH = 0, if (W1,W2) = (0, 0); WIH = 1, if (0,1); WIH = 2, if

W1 = 1. In WIH, we can easily see that the two levels of WFH = 2 and WFH = 3 in WFH are

combined into one level.

To facilitate understanding of WFH and WIH, we partition WFH into two parts of W
(N)
FH and W

(I)
FH .

The former W
(N)
FH is parts of WFH not integrated to make WIH, while the latter W

(I)
FH corresponds

to parts of WFH integrated for WIH. In the example, W
(N)
FH contains WFH = 0 and WFH = 1, and

W
(I)
FH does WFH = 2 and WFH = 3.

The construction ofWIH is done by integratingW
(I)
FH with keepingW

(N)
FH . Let a categorical predictor

formed by integrating W
(I)
FH be W

(I)
IH . In the example, W

(I)
IH corresponds to WIH = 2. By this, WIH

can be partitioned into two parts of W
(N)
FH and W

(I)
IH .

Using these notations, we can re-write WFH and WIH as follows: WFH = {W (N)
FH ,W

(I)
FH}T and

WIH = {W (N)
FH ,W

(I)
IH }T.

It should be noted that W
(I)
IH is a special case of W

(I)
FH , in the sense that W

(I)
IH is constructed by

integrating W
(I)
FH . Therefore, theoretically, usage of W

(I)
FH is more informative than that of W

(I)
IH in

partial SDR. In the next section, we investigate conditions to guarantee that WIH is as informative

to partial SDR as WFH.

2.2. Required conditions

First we define target subspaces SFH
f(Xw) for f(Xw) for the conditional regression of Yw|Xw, which

is a regression Y |X within a subpopulation WFH = w. Similarly, we define that SFH(N)

f(Xwn ), S
FH(I)

f(Xwi
)

and SIH(I)

f(Xw′
i
) are target subspaces for W

(N)
FH = wn, W

(I)
FH = wi and W

(I)
IH = w′

i respectively. Then the

following relations trivially hold among Sf(Xw), SFH(N)

f(Xwn ), S
FH(I)

f(Xwi
) and SIH(I)

f(Xw′
i
):

⊕c′i
wi′=1S

IH(I)

f(Xw′
i
) ⊆ ⊕c∗i

wi=1S
FH(I)

f(Xwi
), (2.1)

SWIH
f(X) :=

{
⊕c∗n

wn=1S
FH(N)

f(Xwn )

}
⊕
{
⊕c′i

w′
i=1

SIH(I)

f(Xw′
i
)

}
⊆
{
⊕c∗n

wn=1S
FH(N)

f(Xwn )

}
⊕
{
⊕c∗i

wi=1S
FH(I)

f(Xwi
)

}
= ⊕c∗

w=1SFH
f(Xw) =: SWFH

f(X) , (2.2)

where the notation ⊕ indicates the direct sum among subspaces (S1⊕S2 = v1 + v2; v1 ∈ S1, v2 ∈ S2)

and c∗, c∗n, c
∗
i and c′i represent total levels of WFH, W

(N)
FH , W

(I)
FH and W

(I)
IH respectively.

Statement (2.2) directly comes from (2.1). Then, under partial SDR contexts, the following relation

is established for ultimate target partial dimension reduction subspaces SW
f(X) for f(X) in the

regression of Y |(X,W):

SWIH
f(X) ⊆ SWFH

f(X) = SW
f(X). (2.3)
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Through the relations of W
(N)
FH , W

(I)
FH and W

(I)
IH , conditions to guarantee that SWFH

f(X) = SWIH
f(X) are

summarized in the next lemma:

Lemma 2.1 The equivalence of SWFH
f(X) = SWIH

f(X) is established under either of the following condi-

tions:

1. ⊕c∗i
wi=1 S

FH(I)

f(Xwi
) ⊆ ⊕c∗n

wn=1S
FH(N)

f(Xwn ); 2. ⊕c∗i
wi=1 S

FH(I)

f(Xwi
) = ⊕c′i

w′
i=1

SIH(I)

f(Xw′
i
).

Proof. (Condition 1) Under condition 1, SWFH
f(X) = ⊕c∗n

wn=1S
FH(N)

f(Xwn ) ⊆ SWIH
f(X), and hence we have

SWFH
f(X) = SWIH

f(X). (Condition 2) By condition 2, we have SWIH
f(X) = {⊕c∗n

wn=1S
FH(N)

f(Xwn )}⊕{⊕c′i
w′

i=1
SIH(I)

f(Xw′
i
)}

= {⊕c∗n
wn=1S

FH(N)

f(Xwn )} ⊕ {⊕c∗i
wi=1S

FH(I)

f(Xwi
)} = SWFH

f(X) . This completes the proof. �

The conditions 1, 2 in Lemma 2.1 do not necessarily imply each other. To see that one of the condi-

tions is at least satisfied, one simple way is to conduct partial SDR for each categorical predictorWi,

i = 1, . . . , q and to study how strongly the estimated sufficient predictors are correlated. The partial

SDR for the full regression of Y |(X,W) pursues to find η such that Y f(X,W)|(PS(η)X,W).

This statement directly implies that Y f(X,Wi)|(PS(η)X,Wi), i = 1, . . . , q. High correlations

among the estimated sufficient predictors acquired from Y |(X,Wi), i = 1, . . . , q, implies that com-

mon sufficient predictors, saying that PS(η̂)X should be enough for all regressions of Y |(X,Wi).

Then we may, in practice, expect that the statement of Y f(X,W)|(PS(η) X,W) will hold for the

common sufficient predictors PS(η̂)X. Then we can attain the full partial SDR with some of Wis,

which formW
(N)
FH . This implies that ⊕c∗n

wn=1S
FH(N)

f(Xwn ) = SWFH
f(X) , and hence condition 1 seems satisfied.

We apply this argument to a subset of of W used to constructW
(I)
IH , saying that W′ = (W ′

1, . . . ,W
′
r)

with r ≤ q. If the estimated sufficient predictors obtained from partial SDRs of Y |(X,W ′
i )s are

highly correlated, it is expected that SW′
f(X) = ⊕c∗i

wi=1S
FH(I)

f(Xwi
) = ⊕c′i

w′
i=1

SIH(I)

f(Xw′
i
), and hence condition

2 seems satisfied.

Since, under condition 1, all information for the target subspaces are given in the conditional

regressions of Ywn |Xwn within subpopulations of W
(N)
FH , wn = 1, . . . , c∗n, and they have a major

portion of observations, it is practically expected to produce more accurate dimension reduction

under condition 1 than under condition 2. In this case, few observations in W
(I)
FH will not matter,

because, regardless of W
(I)
IH , SWFH

f(X) will be well-estimated through ⊕c∗n
wn=1S

FH(N)

f(Xwn ).

For condition 2, the information of the conditional regressions of Ywi |Xwi within subpopulations of

W
(I)
FH must be essential for good estimation of SWFH

f(X) . Condition 2, in theory, guarantee full coverage

of SWFH
Y |X through ⊕c∗i

wi=1S
FH(I)

f(Xwi
) estimated by W

(I)
IH , but, the estimation by W

(I)
IH may still struggle

due to lack of observations in W
(I)
FH in practice. Therefore, it is important to construct WIH so that

W
(I)
IH has good sample sizes to well-estimate ⊕c∗i

wi=1S
FH(I)

f(Xwi
).

3. Simulation and Case Study

For illustration purposes, we adopt optimal partial sliced inverse regression(OPSIR; Wen and Cook,

2007), which can be applied in heterogeneous predictor covariances across the subpopulations by

categorical predictors and estimate the partial central subspace SW
f(X) := SW

Y |X. A notation d will

represent the structural dimension of SW
Y |X throughout the rest of the paper.
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Table 3.1. Estimation of SW
Y |X for Model 1 in Section 3.1

WFH WIH

Percents of d̂ = 1 r̄ Percents of d̂ = 1 r̄

n = 100 60.3 0.969 84.5 0.982

n = 200 69.4 0.992 87.8 0.993

n = 300 78.8 0.998 90.4 0.998

In the simulation, we generated five dimensional predictors X = (X1, . . . , X5)
T from either N(0, I5)

or N(0,Σ), where Ip ∈ Rp×p represents the identity matrix, and Σi,j = 1 for i = j and Σi,j = 0.25

for i ̸= j, i = 1, . . . , 5 and j = 1, . . . , 5. For dimension determination, nominal level 5% was used

for all simulations.

3.1. Model 1

Model 1 was constructed under condition 1 to compare estimation performance of SW
Y |X using WFH

and WIH. We considered two categorical predictors of W1 and W2 with each having two levels.

Therefore, we definedWFH as follows: WFH = 0, if (W1,W2) = (0, 0);WFH = 1, if (W1,W2) = (0, 1);

WFH = 2, if (W1,W2) = (1, 0); WFH = 3, if (W1,W2) = (1, 1). Let n be the total sample size and

nij be the sample sizes with (W1,W2) = (i, j), i = 0, 1 and j = 0, 1. Then we set n00 = 0.4 ∗ n,
n01 = 0.4 ∗ n, n10 = 0.1 ∗ n and n11 = 0.1 ∗ n.
We randomly sampled predictors X within each category of WFH as follows: if WFH = 0, X00 ∼
N(0, I5); if WFH = 1, X01 ∼ N(0,Σ); if WFH = 2, X10 ∼ N(0, I5); if WFH = 3, X11 ∼ N(0,Σ).

Next the following regressions were considered: if WFH = 0, Y00 = X001 + X002 + 0.1 ∗ ε00; if

WFH = 1, Y01 = exp{0.5 ∗ (X011 +X012)} + 0.1 ∗ ε01; if WFH = 2, Y10 = X101 +X102 + 0.1 ∗ ε10;
if WFH = 3, Y11 = exp{0.5 ∗ (X111 +X112)} + 0.1 ∗ ε11; where εi∗j∗

iid∼ N(0, 1) Xij for i = 0, 1,

j = 0, 1, i∗ = 0, 1 and j∗ = 0, 1.

By construction, within all levels of WFH, all conditional regressions depend on X only through

X1 +X2, and hence condition 1 holds; and, SW
Y |X is spanned by η = (1, 1, 0, 0, 0)T. Since there were

fewer observations in WFH = 2 and WFH = 3, we constructed WIH by integrating WFH = 2 and 3:

WIH = 0, if (W1,W2) = (0, 0); WIH = 1, if (W1,W2) = (0, 1); WIH = 2, otherwise.

In the simulation, we used two slices for each conditional regression of Yw|Xw within WFH = w,

w = 0, 1, 2, 3 and for Yw′ |Xw′ within WIH = w′, w′ = 0, 1, 2. As summaries of the simulation

study, we report percentages of d̂ = 1 for the structural dimension estimation and the averages r̄1
of |r| = |

√
R2| computed from the OLS fits of X1 +X2 on η̂TX to measure how well the true basis

η is estimated. Table 3.1 summaries the results for n =100, 200 and 300. The percentages for the

decisions that d̂ = 0 were zeros (not reported).

According to Table 3.1, WIH resulted in better estimation of SW
Y |X than WFH for all sample sizes

considered. Lack of observations with in WFH = 2 and WFH = 3 seemed to produce poor results

of WFH with smaller samples. In either case, the true basis was well-estimated. This simulation

confirms the possible advantage of WIH over WFH in practice.

3.2. Model 2

For Model 2, we considered two categorical predictors ofW1 with 2 levels andW2 with 3 levels. The

hierarchically categorized predictor WFH is constructed as follows: WFH = 0, if (W1,W2) = (0, 0);
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Table 3.2. Estimation of SW
Y |X in the simulation example of Section 3.2

Percents of d̂ = 1 Percents of d̂ = 2 Percents of d̂ > 2 r̄1 r̄2
n = 100 38.1 54.3 7.6 0.985 0.710

n = 200 15.3 77.9 6.8 0.997 0.872

n = 300 4.1 90.1 5.9 0.998 0.930

WFH = 1, if (W1,W2) = (0, 1); WFH = 2, if (W1,W2) = (0, 2); WFH = 3, if (W1,W2) = (1, 0);

WFH = 4, if (W1,W2) = (1, 1); WFH = 5, if (W1,W2) = (1, 2). Let nij be the sample sizes with

(W1,W2) = (i, j), i = 0, 1 and j = 0, 1, 2. Here we set n00 = 0.28 ∗ n, n01 = 0.3 ∗ n, n02 = 0.3 ∗ n
n10 = 0.04 ∗ n, n11 = 0.04 ∗ n and n12 = 0.04 ∗ n.
Predictors X = (X1, . . . , X5)

T were randomly generated within each category of WFH: if WFH = 0,

X00 ∼ N(0,Σ); if WFH = 1, X01 ∼ N(0, I5); if WFH = 2, X02 ∼ N(0, I5); if WFH = j + 3,

X1j ∼ N(0,Σ), j = 0, 1, 2.

Finally the following regressions were constructed: if WFH = 0, Y00 = X001 + 0.1 ∗ ε00; if WFH = 1,

Y01 = X011 +0.1∗ε01; if WFH = 2, Y02 = exp(X021)+0.1∗ε02; if WFH = 3, Y10 = X102 +0.1∗ε10; if
WFH = 4, Y11 = X112+0.1∗ε11; ifWFH = 5, Y12 = exp(X122)+0.1∗ε12, where εi∗j∗

iid∼ N(0, 1) Xij

for i = 0, 1, j = 0, 1, 2, i∗ = 0, 1 and j∗ = 0, 1, 2.

By construction, with WFH = 0, 1, 2, that is marginally W1 = 0, the regression depends on X

only through X1, while the regression does on X only through X2 with WFH = 3, 4, 5, equivalently

marginally W1 = 1. Therefore, in the example, SW
Y |X is spanned by the two columns of η =

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)}T.
It can be easily noted that the simulated data is heavily unbalanced with W1 = 1, which has only

12% of total samples. Therefore, we construct WIH by integrating WFH = 3, 4 and 5: WIH = 0,

if (W1,W2) = (0, 0); WIH = 1, if (W1,W2) = (0, 1); WIH = 2, if (W1,W2) = (0, 2); WIH = 3,

otherwise. With this integration, condition 2 in Lemma 2.1 is satisfied, because the conditional

regression within subpopulation of WIH = 3 depends only through X2.

In the simulation, we used two slices for each conditional regression of Yw′ |Xw′ within WIH = w′,

w′ = 0, 1, 2, 3. As summaries of the simulation study, we report percentages of d̂ = 2 for dimension

estimation and the averages r̄1 and r̄2 of |r1| = |
√
R2

1| and |r2| = |
√
R2

2| computed from the OLS

fits of X1 on η̂TX and of X2 on η̂TX respectively for basis estimation. Table 3.2 summaries the

results for n =100, 200 and 300. The percentages for the decisions that d̂ = 0 were zeros (not

reported).

For n = 100, since there are only 12 observations for the conditional regression of Y3|X3 within

the subpopulation WIH = 3, and they have to account for the second direction X2, it is naturally

expected that {S(0, 1, 0, 0, 0)T} will not be accurately estimated and hence the true dimension d

will be often underestimated to d̂ = 1. This expectation is confirmed according to Table 3.2. With

n = 100, d is determined to 1 about 40% of the time, while the percentages of the correct decisions

are 54%. Relatively low r̄2 (0.710) compared to r̄1 (0.985) also supports this. For n = 200, however,

both the correct decision percentages and r̄2 are greatly improved, at least, by 20% and by 15%

respectively, and the dimension and basis estimation are quite reliable with n = 300. Nominal level

5%, that is percentages of d̂ > 2, is consistently well-estimated regardless of sample sizes.

3.3. Case study: Beta-carotene plasma

For illustration purposes, we investigate a regression study of Beta-carotene plasma concentration
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η̂
T
GX

-2.5608

2.7477

η̂
T
SX

-2.5498

2.8944

η̂
T
VX

-2.6258

2.8041

η̂
TX

-2.91

3.3161

Figure 3.1. A scatter plot matrix of η̂T
GX, η̂T

S X, η̂T
VX and η̂TX in Section 3.3

levels given dietary factors, which are number of calories consumed per day (Calorie), grams of

fiber consumed per day (Fiber), weight/height2 (Quetelet), dietary retinol consumed per day (mcg,

Ret.diet), and three categorical predictors of Gender (0 = male; 1 = female), Smoke (0 = non

smoker; 1 = former smoker; 2 = current smoker) and Vitamin use (0 = often; 1 = sometimes; or 2

= no).

This study was originally done in Nierenberg et al. (1989). They found that dietary carotene was

positively related to Beta-carotene levels, while Quetelet was negatively related. The data was

obtained from StatLib webpage and used under permission. Since cases with numbers 257 was

suspected as an outlier, they were deleted from the data set, and the total number of sample sizes

were 314.

To guarantee the requirements for OPSIR, Calorie, Fiber and Ret.diet were transformed to log-scale

and Quetelet to the inverse-scale. In addition, following the suggestion of Nierenberg et al. (1989),

Beta-carotene plasma concentration was transformed to log-scale for symmetry. After the transfor-

mation, we used the following variables for the regression: Y = log (Beta− carotene plasma levels);

X = (log Calorie, log Fiber, log Ret.diet,Quetelet−1)T; W = (Gender, Smoke,Vitamin)T.

The data is heavily unbalanced for Gender. The total cases for males are just 42, while there are

272 observations for female. Therefore, instead of WFH for gender, smoke and vitamin, we will

consider WIH with 10 levels of 9 cross-combinations between Smoke and Vitamin with females and

one level of males.

To investigate that condition 1 or 2 is satisfied, we performed partial dimension reduction with

consideration of Gender (G) alone, Smoke (S) alone and Vitamin (V) alone, and define that η̂G,

η̂S and η̂V are the corresponding estimated basis matrices. Using nominal level 5%, application of

OPSIR to the three cases with three slices per each level of Gender, Smoke and Vitamin concluded

that one-dimensional linearly transformed predictors were sufficient for each regression. A scatter

plot matrix of η̂T
GX, η̂T

SX and η̂T
VX is reported in Figure 3.1, which shows that the three have very

strong linear relationships. This indicates that either of conditions 1 or 2 seems to hold.

Next we applied OPSIR with two slices per each level of WIH, and determined the structural

dimension. The computed p-values for d = 0, d = 1 and d = 2 were 0.001, 0.094 and 0.098
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Figure 3.2. Scatter plots of Y and η̂TX marked by Gender, Smoke, Vitamin and WIH in Section 3.3

respectively. With nominal level 5%, we decide that d̂ = 1. Then let η̂, which is shown in Figure

3.1, represent the estimated basis matrix withWIH. Marginally standardizing each of the remaining

predictors to have a sample standard deviation of 1, the estimated sufficient predictor η̂TX is

defined:

η̂TX = −0.687 log Calorie + 0.378 log Fiber + 0.376 logRet.diet + 0.493Quetelet−1.

To investigate relations between Y and η̂TX with Gender, Smoke, Vitamin and WIH, scatter plots

were constructed marked by each categorical predictor, and they are reported in Figure 3.2. In

Figures 3.2(a)–(d), the colored-lines stands for LOWESS smooths with smoothing parameter 0.7

for each level of each categorical predictor of Gender, Smoke, Vitamin and WIH. According to the

figures, there seems no strong interaction between η̂TX and each of Gender, Smoke, Vitamin and

WIH. Therefore, we conclude that additive-linear regression between Y and η̂TX can summarize

the study. Then we can observe the same relation between Beta-carotene plasma concentration

levels and dietary factors as Nierenberg et al.’s founding.
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4. Discussion

Sufficient dimension reduction is restricted to dimension reduction of many-valued or continuous

predictors. With a categorical predictor, partial sufficient dimension reduction should be done for

many-valued or continuous predictor across subpopulations defined by the categorical predictor.

When there are many categorical predictors involved and they are heavily unbalanced, direct ap-

plication of usual partial dimension reduction methodologies should be problematic and limited in

use.

To avoid the issue of unbalanced categorical predictors, we propose usage of an integrated categorical

predictor over a hierarchically categorized predictor. To guarantee that the integrated categorical

predictor is fully informative to partial dimension reduction, we investigate the required conditions.

To see that the conditions hold, one should conduct partial dimension reductions for each categorical

predictor, and closely study the correlations of estimated sufficient predictors. Numerical studies

confirm its background theory and real data is adequately analyzed through the proposed approach.
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