• 제목/요약/키워드: Parity check

검색결과 274건 처리시간 0.028초

다수의 코드율이 가능한 저밀도 패러티 체크 코드의 설계 방법 (A Design Method of Multi-Rate Low Density Parity Check Code)

  • 황성희;김진한;박현수
    • 정보저장시스템학회논문집
    • /
    • 제3권3호
    • /
    • pp.126-128
    • /
    • 2007
  • 일반적으로 주어진 하나의 H matrix 로 다수의 코드율을 가지는 코드화가 가능하다. 하지만 Low Density Parity Check(LDPC) 코드의 H matrix는 H matrix 내의 1의 개수와 위치에 따라 그 성능이 달라짐으로 해서 하나의 H matrix로 다수의 코드율을 대응하기 위한 설계 방법이 요구된다. H matrix 의 성능은 일반적으로 girth나 minimum distance에 의해 좌우되고 H matrix의 1의 위치에 따라 달라진다. 본 논문에서는 H matrix의 girth 와 minimum distance에 입각한 다수 개의 코드율이 대응 가능한 LDPC code의 H matrix 설계 방법을 제시하고자 한다. 이렇게 함으로써 하나의 H matrix로 다수의 코드율에 따른 각각의 성능을 일정 수준 이상 유지하는 multi-rate LDPC code가 가능하다.

  • PDF

Enhanced Upper Bound for Erasure Recovery in SPC Product Codes

  • Muqaibel, Ali
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.518-524
    • /
    • 2009
  • Single parity check (SPC) product codes are simple yet powerful codes that are used to correct errors and/or recover erasures. The focus of this paper is to evaluate the performance of such codes under erasure scenarios and to develop a closed-form tight upper bound for the post-decoding erasure rate. Closed-form exact expressions are derived for up to seven erasures. Previously published closed-form bounds assumed that all unrecoverable patterns should contain four erasures in a square. Additional non-square patterns are accounted for in the proposed expressions. The derived expressions are verified using exhaustive search. Eight or more erasures are accounted for by using a bound. The developed expressions improve the evaluation of the recoverability of SPC product codes without the need for simulation or search algorithms, whether exhaustive or novel.

Effects of LDPC Code on the BER Performance of MPSK System with Imperfect Receiver Components over Rician Channels

  • Djordjevic, Goran T.;Djordjevic, Ivan B.;Ivanis, Predrag N.
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.619-621
    • /
    • 2009
  • In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low-density parity-check coded multilevel phase-shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in-phase-quadrature mismatch, and the fading severity.

잰킷 행렬을 이용한 저밀도 부호의 구성 (Low Density Codes Construction using Jacket Matrices)

  • 문명룡;이광재;;황기연;이문호
    • 대한전자공학회논문지TC
    • /
    • 제42권8호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 논문에서는 대수 이론과 관련된 일반화된 치환 행렬로부터 저밀도 부호의 명시적 구성을 고찰하였으며, 순환공식과 치환행렬에 관한 재킷 역 블록 행렬을 설계하였다. 설계 결과로부터 제안 기법은 저밀도 부호를 얻기 위한 간단하며, 고속화된 기법임을 알 수 있다. 또한, $\pi$-회전 LDPC(low density parity check) 부호와 같은 구조화 LDPC 부호 역시 저밀도 재킷 역 블록 행렬임을 증명하였다.

가변 부호화 율을 가지는 LDPC 부호화된 V-BLAST 시스템 (A Variable Rate LDPC Coded V-BLAST System)

  • 노민석;김남식;박현철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(1)
    • /
    • pp.55-58
    • /
    • 2004
  • This this paper, we propose vertical Bell laboratories layered space time (V-BLAST) system based on variable rate Low-Density Parity Check (LDPC) codes to improve performance of receiver when QR decomposition interference suppression combined with interference cancellation is used over independent Rayleigh fading channel. The different rate LDPC codes can be made by puncturing some rows of a given parity check matrix. This allows to implement a single encoder and decoder for different rate LDPC codes. The performance can be improved by assigning stronger LDPC codes in lower layer than upper layer because the poor SNR of first detected data streams makes error propagation. Keeping the same overall code rates, the V-BLAST system with different rate LDPC codes has the better performance (in terms of Bit Error Rate) than with constant rate LDPC code in fast fading channel.

  • PDF

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Design of Non-Binary Quasi-Cyclic LDPC Codes Based on Multiplicative Groups and Euclidean Geometries

  • Jiang, Xueqin;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.406-410
    • /
    • 2010
  • This paper presents an approach to the construction of non-binary quasi-cyclic (QC) low-density parity-check (LDPC) codes based on multiplicative groups over one Galois field GF(q) and Euclidean geometries over another Galois field GF($2^S$). Codes of this class are shown to be regular with girth $6{\leq}g{\leq}18$ and have low densities. Finally, simulation results show that the proposed codes perform very wel with the iterative decoding.

고성능 LDPC 코드를 생성하기 위한 최적화된 알고리듬 (An Optimized Algorithm for Constructing LDPC Code with Good Performance)

  • 서희종
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1149-1154
    • /
    • 2013
  • 본 논문에서, 성능 좋은 LDPC(Low density parity check) 코드을 위한 태너(Tanner) 그래프를 생성하는 알고리듬을 제안한다. 이 알고리듬은 뎁스 컨스트렌트(depth constraints)를 유지하면서 태너 그래프의 새로운 가지를 생성한다. 이 알고리듬은 그래프의 스토핑 �V(stopping set)을 효과적으로 줄이고, 기존의 다른 알고리듬 보다도 낮은 계산복잡도를 갖는다. 모의시험을 통해서 이 알고리듬의 개선된 성능을 확인 할 수 있었다.

Further Results on Performance of LDPC coded IM-OFDM-QOS System

  • Kim, Hyeongseok;Kim, Jeongchang
    • 방송공학회논문지
    • /
    • 제24권7호
    • /
    • pp.1221-1227
    • /
    • 2019
  • This paper describes a low-density parity-check (LDPC) coded index modulated orthogonal frequency division multiplexing with quasi-orthogonal sequence (IM-OFDM-QOS) and provides performance evaluations of the proposed system. By using QOS as the spreading code, IM-OFDM-QOS scheme can improve the reception performance than IM-OFDM-SS scheme for a given data rate. On the other hand, LDPC code is widely used to the latest wireless communication systems as forward error correction (FEC) scheme and has Shannon-limit approaching performance. Therefore, by applying LDPC code to IM-OFDM-QOS system as FEC scheme, the reception performance can be further improved. Simulation results show that significant signal-to-noise ratio (SNR) gains can be obtained for LDPC coded IM-OFDM-QOS system compared to the LDPC coded IM-OFDM-SS system and the SNR gain increases with the higher code rate.

ON GENERALIZATIONS OF SKEW QUASI-CYCLIC CODES

  • Bedir, Sumeyra;Gursoy, Fatmanur;Siap, Irfan
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.459-479
    • /
    • 2020
  • In the last two decades, codes over noncommutative rings have been one of the main trends in coding theory. Due to the fact that noncommutativity brings many challenging problems in its nature, still there are many open problems to be addressed. In 2015, generator polynomial matrices and parity-check polynomial matrices of generalized quasi-cyclic (GQC) codes were investigated by Matsui. We extended these results to the noncommutative case. Exploring the dual structures of skew constacyclic codes, we present a direct way of obtaining parity-check polynomials of skew multi-twisted codes in terms of their generators. Further, we lay out the algebraic structures of skew multipolycyclic codes and their duals and we give some examples to illustrate the theorems.