일반적으로 주어진 하나의 H matrix 로 다수의 코드율을 가지는 코드화가 가능하다. 하지만 Low Density Parity Check(LDPC) 코드의 H matrix는 H matrix 내의 1의 개수와 위치에 따라 그 성능이 달라짐으로 해서 하나의 H matrix로 다수의 코드율을 대응하기 위한 설계 방법이 요구된다. H matrix 의 성능은 일반적으로 girth나 minimum distance에 의해 좌우되고 H matrix의 1의 위치에 따라 달라진다. 본 논문에서는 H matrix의 girth 와 minimum distance에 입각한 다수 개의 코드율이 대응 가능한 LDPC code의 H matrix 설계 방법을 제시하고자 한다. 이렇게 함으로써 하나의 H matrix로 다수의 코드율에 따른 각각의 성능을 일정 수준 이상 유지하는 multi-rate LDPC code가 가능하다.
Single parity check (SPC) product codes are simple yet powerful codes that are used to correct errors and/or recover erasures. The focus of this paper is to evaluate the performance of such codes under erasure scenarios and to develop a closed-form tight upper bound for the post-decoding erasure rate. Closed-form exact expressions are derived for up to seven erasures. Previously published closed-form bounds assumed that all unrecoverable patterns should contain four erasures in a square. Additional non-square patterns are accounted for in the proposed expressions. The derived expressions are verified using exhaustive search. Eight or more erasures are accounted for by using a bound. The developed expressions improve the evaluation of the recoverability of SPC product codes without the need for simulation or search algorithms, whether exhaustive or novel.
Djordjevic, Goran T.;Djordjevic, Ivan B.;Ivanis, Predrag N.
ETRI Journal
/
제31권5호
/
pp.619-621
/
2009
In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low-density parity-check coded multilevel phase-shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in-phase-quadrature mismatch, and the fading severity.
본 논문에서는 대수 이론과 관련된 일반화된 치환 행렬로부터 저밀도 부호의 명시적 구성을 고찰하였으며, 순환공식과 치환행렬에 관한 재킷 역 블록 행렬을 설계하였다. 설계 결과로부터 제안 기법은 저밀도 부호를 얻기 위한 간단하며, 고속화된 기법임을 알 수 있다. 또한, $\pi$-회전 LDPC(low density parity check) 부호와 같은 구조화 LDPC 부호 역시 저밀도 재킷 역 블록 행렬임을 증명하였다.
This this paper, we propose vertical Bell laboratories layered space time (V-BLAST) system based on variable rate Low-Density Parity Check (LDPC) codes to improve performance of receiver when QR decomposition interference suppression combined with interference cancellation is used over independent Rayleigh fading channel. The different rate LDPC codes can be made by puncturing some rows of a given parity check matrix. This allows to implement a single encoder and decoder for different rate LDPC codes. The performance can be improved by assigning stronger LDPC codes in lower layer than upper layer because the poor SNR of first detected data streams makes error propagation. Keeping the same overall code rates, the V-BLAST system with different rate LDPC codes has the better performance (in terms of Bit Error Rate) than with constant rate LDPC code in fast fading channel.
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.210-219
/
2017
This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.
This paper presents an approach to the construction of non-binary quasi-cyclic (QC) low-density parity-check (LDPC) codes based on multiplicative groups over one Galois field GF(q) and Euclidean geometries over another Galois field GF($2^S$). Codes of this class are shown to be regular with girth $6{\leq}g{\leq}18$ and have low densities. Finally, simulation results show that the proposed codes perform very wel with the iterative decoding.
본 논문에서, 성능 좋은 LDPC(Low density parity check) 코드을 위한 태너(Tanner) 그래프를 생성하는 알고리듬을 제안한다. 이 알고리듬은 뎁스 컨스트렌트(depth constraints)를 유지하면서 태너 그래프의 새로운 가지를 생성한다. 이 알고리듬은 그래프의 스토핑 �V(stopping set)을 효과적으로 줄이고, 기존의 다른 알고리듬 보다도 낮은 계산복잡도를 갖는다. 모의시험을 통해서 이 알고리듬의 개선된 성능을 확인 할 수 있었다.
This paper describes a low-density parity-check (LDPC) coded index modulated orthogonal frequency division multiplexing with quasi-orthogonal sequence (IM-OFDM-QOS) and provides performance evaluations of the proposed system. By using QOS as the spreading code, IM-OFDM-QOS scheme can improve the reception performance than IM-OFDM-SS scheme for a given data rate. On the other hand, LDPC code is widely used to the latest wireless communication systems as forward error correction (FEC) scheme and has Shannon-limit approaching performance. Therefore, by applying LDPC code to IM-OFDM-QOS system as FEC scheme, the reception performance can be further improved. Simulation results show that significant signal-to-noise ratio (SNR) gains can be obtained for LDPC coded IM-OFDM-QOS system compared to the LDPC coded IM-OFDM-SS system and the SNR gain increases with the higher code rate.
In the last two decades, codes over noncommutative rings have been one of the main trends in coding theory. Due to the fact that noncommutativity brings many challenging problems in its nature, still there are many open problems to be addressed. In 2015, generator polynomial matrices and parity-check polynomial matrices of generalized quasi-cyclic (GQC) codes were investigated by Matsui. We extended these results to the noncommutative case. Exploring the dual structures of skew constacyclic codes, we present a direct way of obtaining parity-check polynomials of skew multi-twisted codes in terms of their generators. Further, we lay out the algebraic structures of skew multipolycyclic codes and their duals and we give some examples to illustrate the theorems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.