
Bull. Korean Math. Soc. 57 (2020), No. 2, pp. 459–479

https://doi.org/10.4134/BKMS.b190325

pISSN: 1015-8634 / eISSN: 2234-3016

ON GENERALIZATIONS OF SKEW QUASI-CYCLIC CODES
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Abstract. In the last two decades, codes over noncommutative rings

have been one of the main trends in coding theory. Due to the fact

that noncommutativity brings many challenging problems in its nature,
still there are many open problems to be addressed. In 2015, generator

polynomial matrices and parity-check polynomial matrices of generalized
quasi-cyclic (GQC) codes were investigated by Matsui. We extended

these results to the noncommutative case. Exploring the dual struc-

tures of skew constacyclic codes, we present a direct way of obtaining
parity-check polynomials of skew multi-twisted codes in terms of their

generators. Further, we lay out the algebraic structures of skew multi-

polycyclic codes and their duals and we give some examples to illustrate
the theorems.

1. Introduction

The family of linear codes is huge. So, structural subfamilies have been
always on the focus. The very first is the family of cyclic codes with a rich
algebraic structure and applicability. Quasi-cyclic codes have been the next
generalization of cyclic codes for which some very good and applicable codes
are shown to be a member of such family of codes. The main idea in all of
these attempts is to find a different subfamily of linear codes with concrete
algebraic structures. For the last two decades research on linear codes has
been shifted to cyclic codes over noncommutative rings, known as skew cyclic
codes intensively. These are larger than the commutative ones and surely
contain them as subfamilies. The pace for exploring these families has not
been as in the commutative case. The problems due to the skewness property
are more challenging. Natural generalizations of such codes for skew case are
attempted and their structures are explored. As a concrete result and a partial
contribution of this paper is the formulation of parity-check polynomial for
skew constacyclic codes in terms of their generators whose existence has been
known since its definition (see Theorem 4.4).
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The flow of the paper is formed as follows: In Section 2, we present some
basic definitions and review some literature related to our problems. Next, in
Section 3, we present skew multi-twisted codes, a recently introduced general-
ization of generalized quasi-cyclic codes over noncommutative rings. Here, we
approach the definition and the representation of this family of codes by rep-
resenting them via generator matrices with entries from skew polynomial rings
and state some related theorems regarding their structures both for codes and
their duals. In Section 4, we explore the dual structure of skew constacyclic
codes. Here, in Theorem 4.4, we explicitly state the parity-check polynomial
for skew constacyclic codes which will be contributing to the duality theorem
for skew multi-twisted codes. In Section 5, the structure of duals of skew multi-
twisted codes has been established and explored. Also, Theorem 5.6 presents a
lower bound for both dimension and minimum distance of skew multi-twisted
codes and some concrete examples are worked out. In the last section, Section
6, a larger family that contains skew multi-twisted codes, called skew multi-
polycyclic codes is introduced and their structures together with their duals
are also explored. Theorems 6.3 and 6.5 state parity-check polynomials of
skew polycyclic and skew multi-polycyclic codes respectively.

2. Skew cyclic codes

A linear code of length n over a finite field of order q, i.e., Fq, is an Fq-
subspace of Fnq . A linear code C is said to be cyclic, if it is invariant under the
cyclic shift, i.e., (c0, c1, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C. There is a
one to one correspondence between cyclic codes and ideals of the quotient ring
Fq[x]/ (xn − 1) [29]. Recently, cyclic codes are extended to a noncommutative
case using skew polynomials [7]. Skew polynomial rings were introduced by
Ore in [28] and studied further by Jacobson [19] and McDonald [27].

Definition 1 ([27]). Let Fq be a finite field of order q and θ be an automor-
phism of Fq. The set of polynomials

Fq[x; θ] = {a0 + a1x+ · · ·+ anx
n | ai ∈ Fq, n ∈ N}

is called skew polynomial ring over Fq where addition is ordinary but multipli-
cation is defined as xa = θ(a)x for all a ∈ Fq.

Skew polynomial rings are noncommutative unless θ is the identity automor-
phism. Fq[x; θ] is left and right Euclidean, i.e., both right and left division algo-
rithms hold and any left or right ideal is principal. Factorization is not unique
in Fq[x; θ]. Let f(x) be a polynomial in Fq[x; θ]. If f(x)p(x) = p(x)f(x) for all
p(x) ∈ Fq[x; θ], then f(x) is called a central polynomial. The set of central poly-
nomials of Fq[x; θ] is called the center of Fq[x; θ] and denoted by Z(Fq[x; θ]).
Further, f(x) is a central polynomial if and only if it is of the form,

(1) f(x) = a0 + a1x
m + a2x

2m + · · ·+ anx
nm,

where ai ∈ F θq (the fixed field of θ in Fq) and m = |〈θ〉| is the order of θ [27].
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We write g(x)|rf(x), if g(x) is a right divisor of f(x). The following lemma
shows that two factors of a central polynomial commute.

Lemma 2.1 ([9, Lemma 7]). Let f(x) = h(x)g(x) in Fq[x; θ]. If f(x) ∈
Z(Fq[x; θ]), then h(x)g(x) = g(x)h(x).

In [7], Boucher et al. generalized cyclic codes by using skew polynomial
rings. A linear code C of length n over Fq is called skew cyclic, if it is invariant
under the skew cyclic shift, i.e.,

(c0, c1, . . . , cn−1) ∈ C ⇒ (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.
A codeword c = (c0, c1, . . . , cn−1) corresponds to the polynomial c(x) = c0 +
c1x + · · · + cn−1x

n−1, hence the skew cyclic shift of c corresponds to xc(x)
in the quotient ring Fq[x; θ]/(xn − 1). Boucher et al. show that skew cyclic
codes are ideals of the ring Fq[x; θ]/(xn − 1), whenever xn − 1 ∈ Z(Fq[x; θ])
[7]. Later, the restriction on xn − 1 to be a central polynomial is removed by
considering skew cyclic codes as left Fq[x; θ]-submodules of Fq[x; θ]/(xn− 1) in
[31]. Skew cyclic codes, being a generalization of cyclic codes and covering a
large and rich subclass of linear codes, present many advantages while searching
for linear codes with structures and in some cases good parameters. In many
recent studies such as [1,7], new record breaking codes were obtained via using
skew polynomials. Further, by considering xn − α and f(x) instead of xn − 1
respectively, some further generalizations such as skew constacyclic codes [8,20]
and module θ-codes (skew polycyclic codes) [9, 10,26] are also studied.

The following preliminary result can be derived directly from Theorems 6,
7 and Lemma 2 of [31] by using similar methods, hence the proof is omitted.

Lemma 2.2. Let C be a left Fq[x; θ]-submodule of Fq[x; θ]/(f(x)) where f(x) 6=
0 and deg(f(x)) > 0. Let g(x) be a monic polynomial of minimum degree in C.
Then g(x) is unique and C is principally generated by g(x), i.e., C = (g(x)).
Moreover, g(x) is a right divisor of f(x) in Fq[x; θ] and |C|=qdeg(f(x))−deg(g(x)).

Quasi-cyclic codes are another generalization of cyclic codes. They are
asymptotically good [35]. Many studies have been conducted in terms of either
exploring their algebraic structures [11, 21–23] or obtaining codes with good
parameters [15–17, 32]. Recently, skew quasi-cyclic codes are introduced and
some skew QC codes having minimum Hamming distances larger than previ-
ously best known linear codes of the same length and dimension are obtained
[1].

Generalized quasi-cyclic (GQC) codes are QC codes with cyclic components
of different lengths [33]. In [25], structures of the dual codes of GQC codes were
studied by identifying generator matrices of GQC codes as upper triangular
matrices with entries in Fq[x].

Throughout this paper, a linear code C of length n, dimension k and mini-
mum Hamming distance d is briefly denoted by [n, k, d]. A polynomial g(x) =
g0 + g1x + · · · + gn−1x

n−1 and its coefficient vector g = (g0, g1, . . . , gn−1) will
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be used interchangeably where there is no confusion. The notation g · h stands
for the Euclidean inner product of vectors g and h. By the term dual code, or
C⊥, we mean the dual code of C with respect to the Euclidean inner product.
For an arbitrary matrix P , P tr denotes the transpose of P .

3. Skew multi-twisted codes

Multi-twisted codes have been proposed by Aydin and Halilović [3] and their
duals have been explored recently by Sharma et al. [30].

Definition 2. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1 , c2,1, . . . , c2,n2−1, c2,n2 , . . . , cl,1, . . . , cl,nl−1, cl,nl
)

be a codeword of C. Let θ be an automorphism of Fq, α1, α2, . . . , αl ∈ F ∗q and
α = (α1, . . . , αl). If skew α-multi-twisted shift of c;

Tα(c) = (α1θ(c1,n1), θ(c1,1), . . . , θ(c1,n1−1), α2θ(c2,n2), θ(c2,1), . . . , θ(c2,n2−1),

. . . , αlθ(cl,nl
), θ(cl,1), . . . , θ(cl,nl−1))

is also a codeword in C, then C is a skew α-multi-twisted code of length
(n1, n2, . . . , nl).

Briefly, a multi-twisted code is a GQC code with constacyclic components.
The case where αi = 1 for all 1 ≤ i ≤ l corresponds to a skew GQC code
[13], and the case where l = 1 corresponds to a skew constacyclic code which
is invariant under skew α-constacyclic shift [8].

Let R = Fq[x; θ] and Ri = Fq[x; θ]/(xni −αi). In polynomial representation
form, a skew α-multi-twisted code C is a left R-submodule of M = R1 ×R2 ×
· · · ×Rl. Here, we adopt and extend the method introduced in [25] to a family
of skew α-multi-twisted codes. Let

φ : Fq[x; θ]l →M

(f1, f2, . . . , fl)→ (f1 mod (xn1−α1), f2 mod (xn2−α2), . . . , fl mod (xnl−αl)).

For a skew α-multi-twisted code C, define D = φ−1(C). For the zero codeword
(0, 0, . . . , 0) ∈ C, its preimage φ−1((0, 0, . . . , 0)) consists of the vectors of the
following form:

(0, . . . , 0︸ ︷︷ ︸
i−1

, xni − αi, 0, . . . , 0︸ ︷︷ ︸
l−i

)(2)

for all 1 ≤ i ≤ l. Conversely, if a left R-submodule D ⊂ Fq[x; θ]l includes l poly-
nomial vectors of the form (2), then φ(D) determines a skew α-multi-twisted
code. We view a skew α-multi-twisted code C in Fq[x; θ]l as a submodule and
identify each skew α-multi-twisted code with an l × l polynomial generator
matrix.
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Definition 3. Let C be a skew α-multi-twisted code, and let G = [gi,j(x)] be
an l × l matrix whose entries are in Fq[x; θ] and whose rows are codewords of
C. If G is upper-triangular of the form

(3) G =


g1,1(x) g1,2(x) · · · g1,l(x)

0 g2,2(x) · · · g2,l(x)
...

. . .
. . .

...
0 · · · 0 gl,l(x)


l×l

and if for all 1 ≤ i ≤ l, gi,i(x) has the smallest degree among all codewords of
the form (0, . . . , 0, ci(x), . . . , cl(x)) ∈ C with ci(x) 6= 0, then G is a generator
polynomial matrix of C. Moreover, if G satisfies the conditions that gi,i(x) is
monic for all 1 ≤ i ≤ l and deg gi,j(x) < deg gj,j(x) for all 1 ≤ i 6= j ≤ l, then
we call G the reduced generator polynomial matrix of C.

In [25], for the commutative case, Buchberger’s algorithm is applied to show
the existence of polynomials in the reduced generator polynomial matrix G
which is uniquely determined. Since the skew polynomial ring Fq[x; θ] is right
Euclidean, i.e., right division algorithm holds for polynomials in Fq[x; θ] [27],
the same approach can be applied to a skew α-multi-twisted code C to ob-
tain the reduced generator polynomial matrix given in Definition 3. In this
case, division should be considered as the right division in Fq[x; θ] and gcd of
polynomials as gcrd (greatest common right divisor).

Considering the results in [25] and [34], and by Definition 3, we can state
the following remark on the dimension of a code C.

Remark 3.1 (Dimension of C). Let C be a skew α-multi-twisted code and G
be the reduced generator polynomial matrix of C. Then, the dimension of C is

dim(C) =

l∑
i=1

ni − deg(gi,i(x)).

Given a reduced generator polynomial matrix for a code C, the problem of
obtaining a reduced parity-check polynomial matrix H will be resolved later
in Theorem 5.3. Here, we define a reduced parity-check polynomial matrix as
follows:

Definition 4. Let C be a skew α-multi-twisted code, and let H = [hi,j(x)] be
an l× l matrix whose entries are in Fq[x; θ] and whose rows are codewords from
C⊥. If H is in a lower-triangular form as follows

(4) H =


h1,1(x) 0 · · · 0

h2,1(x) h2,2(x)
. . .

...
...

...
. . . 0

hl,1(x) hl,2(x) · · · hl,l(x)


l×l
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and if for all 1 ≤ i ≤ l, hi,i(x) have the minimum degrees among all codewords
of the form (c1(x), . . . , ci(x), 0, . . . , 0) ∈ C⊥ with ci(x) 6= 0, then H is a parity-
check polynomial matrix of C. Moreover, if H satisfies the conditions that
hi,i(x) are also monic for all 1 ≤ i ≤ l and deg hi,j(x) < deg hj,j(x) for all
1 ≤ i 6= j ≤ l, then we call H the reduced parity-check polynomial matrix of C.

The following propositions can be derived similar to their corresponding
commutative cases given as Propositions 2, 3 and 5 in [25], so we omit their
proofs.

Proposition 3.2. Let G be an l× l reduced polynomial matrix as in (3). Then
G is the reduced generator polynomial matrix of a skew α-multi-twisted code C
if and only if there exists an l × l matrix A with entries in Fq[x; θ] such that

(5) AG = diag[xn1 − α1, . . . , x
nl − αl].

Proposition 3.3. Let G be an l × l reduced polynomial matrix as in (3) and
A = [ai,j ] be a matrix satisfying (5). Then A is an upper triangular matrix,
satisfying deg (ai,i) > deg (ai,j) for all 1 ≤ i 6= j ≤ l.

4. Duality theorem for skew constacyclic codes

Skew multi-twisted codes with l = 1 are skew constacyclic codes which
are introduced in [8] and some properties of this family are given in [12] and
[20]. In polynomial representation, skew α-constacyclic codes correspond to left
Fq[x; θ]-submodules of Fq[x; θ]/(xn−α). In fact, a skew α-constacyclic code C
of length n is principally generated by a right divisor g(x) of xn−α in Fq[x; θ],
i.e., C = (g(x)). In this section, given the generator of a skew constacyclic
code, we introduce a direct method of finding the generator of the dual code
explicitly. Throughout this section we set m | n, where m = |〈θ〉|.

Lemma 4.1. Let xn − α ∈ Fq[x; θ], o(α) be the multiplicative order of α in
F ∗q and N = o(α)n. Then, xn − α is a right divisor of the central polynomial

xN − 1 in Fq[x; θ].

Proof. Let N = o(α)n. Then,

xN − 1 = (α−1 + α−2xn + α−3x2n + · · ·+ α−o(α)x(o(α)−1)n)(xn − α). �

Since m | n, we have xN − 1 ∈ Z(Fq[x; θ]) and from Lemma 2.1, xN − 1 =

(xn − α)(α−1 + α−2xn + α−3x2n+ · · ·+ α−o(α)x(o(α)−1)n). We simply use the

expression xN−1
xn−α for the right division of xN − 1 by xn − α.

Lemma 4.2. Let αi ∈ F ∗q and ni be a positive integer such that m|ni for
1 ≤ i ≤ l. Then

xni − αi|rxN − 1

where N = lcm(n1, n2, . . . , nl)lcm(o(α1), . . . , o(αl)).



ON GENERALIZATIONS OF SKEW QUASI-CYCLIC CODES 465

Proof. By Lemma 4.1, we have

(α−1i + α−2i xni + α−3i x2ni + · · ·+ α
−o(αi)
i x(o(αi)−1)ni)(xni − αi) = xnio(αi) − 1

and we also have

o(αi)ni | lcm(n1, n2, . . . , nl)lcm(o(α1), . . . , o(αl)).

Hence,

xnio(αi) − 1|rxN − 1.

Therefore xni − αi|rxN − 1. �

In [20], Lemma 3.1 shows that the dual of a skew α-constacyclic code is
a skew α−1-constacyclic code, with a restriction on α being fixed by θ. This
lemma holds for any α ∈ F ∗q , and can be proved by using the same method.

Lemma 4.3 ([20], Lemma 3.1). Let C be a skew α-constacyclic code of length
n over Fq, where α ∈ F ∗q . Then the dual code C⊥ is a skew α−1-constacyclic
code of length n over Fq.

In order to determine the generator polynomials of dual codes, the following
definition will be crucial.

Definition 5. Let n be a positive integer and a(x) = a0 + a1x+ a2x
2 + · · ·+

an−1x
n−1 ∈ Fq[x; θ] with deg(a(x)) ≤ n− 1. We define

a〈n,α〉(x) = α−1a0 + θ(an−1)x+ θ2(an−2)x2 + · · ·+ θn−1(a1)xn−1.

Let xn−α = a(x)g(x) with deg(a(x)) = k and C = (g(x)). If we were dealing
with the case α = 1, i.e., skew cyclic case, skew reciprocal polynomial of a(x),
which is defined as aR(x) = ak + θ(ak−1)x + · · · + θk(a0)xk, would be a right
divisor of xn− 1 and thus a generator polynomial for C⊥ [9]. However, for the
skew constacyclic case, xn−α = a(x)g(x) does not imply aR(x)|rxn−α−1 nor
does it imply C⊥ = (aR(x)). In [10] the authors determined that C⊥ = (hR(x))
where h(x) is a polynomial satisfying xn − θ−k(α) = g(x)h(x), this guarantees
the existence but is implicit and the process involves a query to find such a
polynomial h(x). Later in [12] in Theorem 6.1, authors obtained the generator
of the dual code in terms of h(x), while xn − α = h(x)g(x), by using the
properties of skew generalized circulant matrices.

In the following theorem, we give an alternative algorithm to find the gen-
erator polynomial of C⊥ directly by using a〈n,α〉(x).

Theorem 4.4. Let xn−α = a(x)g(x) in Fq[x; θ] and C be a skew α-constacyclic

code generated by g(x). Then, a〈n,α〉 ∈ C⊥. Moreover, C⊥ = (xka〈n,α〉(x)),
where k = deg(a(x)).

Proof. Let g(x) = g0+g1x+· · ·+gn−1xn−1 and a(x) = a0+a1x+· · ·+an−1xn−1.

Let us multiply both sides of xn − α = a(x)g(x) from left by xN−1
xn−α , where
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N = o(α)n. We obtain,

xN − 1 =
xN − 1

xn − α
a(x)g(x).

Since xN − 1 ∈ Z(Fq[x; θ]), from Lemma 2.1 we can write

xN − 1 = g(x)
xN − 1

xn − α
a(x),

which means

g(x)(α−1 +α−2xn +α−3x2n + · · ·+α−o(α)x(o(α)−1)n)a(x) = 0 (mod xN − 1).

This is equivalent to
(6)

g(x)α−1a(x) + g(x)α−2a(x)xn + · · ·+ g(x)a(x)x(o(α)−1)n = 0 (mod xN − 1)

since α−o(α) = 1 and xn ∈ Z(Fq[x; θ]).
The coefficient of x0 in Equation (6) is g0α

−1a0 + g1θ(an−1) + g2θ
2(an−2) +

· · · + gn−1θ
n−1(a1) = 0 which implies g · a〈n,α〉 = 0. To prove a〈n,α〉 ∈ C⊥,

we need to show that a〈n,α〉 is orthogonal to all skew α-constacyclic shifts of
g. Let us denote the skew α-constacyclic shift by Tα. If we multiply Equation
(6) with x from left, then the coefficient of x0 becomes

θ(gn−1)a0 + θ(g0)θ(an−1) + θ(g1)θ2(an−2) + · · ·+ θ(gn−2)θn−1(a1) = 0.

This implies that Tα(g) ·a〈n,α〉 = 0. Similarly, if we multiply Equation (6) with
xi from left, we obtain T iα(g) · a〈n,α〉 = 0. Thus, we have a〈n,α〉 ∈ C⊥.

Now let us show that C⊥ = (xka〈n,α〉(x)). Since C⊥ is a skew α−1-
constacyclic code, it is a left Fq[x; θ]-submodule of Fq[x; θ]/(xn − α−1). Thus

xia〈n,α〉(x) ∈ Fq[x; θ]/(xn − α−1) also belongs to C⊥. We have,

deg(a(x)) = k =⇒ deg(xka〈n,α〉(x)) = k in Fq[x; θ]/(xn − α−1).

Since the quotient ring is principal and the dimension of C⊥ is n−k, there is no
polynomial in C⊥ with degree less than k. Therefore C⊥ is indeed generated
by xka〈n,α〉(x). �

5. Duality theorem for skew multi-twisted codes

In this section, we state and prove a theorem that reveals the structure of
dual codes of skew (α1, . . . , αl)-multi-twisted codes. This goal is achieved by
generalizing Theorem 4.4 for l > 1 and obtaining the reduced parity-check
polynomial matrices of skew (α1, . . . , αl)-multi-twisted codes from their re-
duced generator polynomial matrices. Throughout this section we set m |ni,
where m = |〈θ〉|.

Theorem 5.1. Let C be a skew (α1, . . . , αl)-multi-twisted code of length (n1,
. . . , nl) over Fq. Then, the dual code C⊥ is a skew (α−11 , . . . , α−1l )-multi-twisted
code.
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Proof. Let Tα−1(c) be the skew (α−11 , . . . , α−1l )-multi-twisted shift of c. Let

c = (c1,1, . . . , c1,n1−1, c1,n1 , c2,1, . . . , c2,n2−1, c2,n2 , . . . ,

cl,1, . . . , cl,nl−1, cl,nl
) ∈ C

and

d = (d1,1, . . . , d1,n1−1, d1,n1
, d2,1, . . . , d2,n2−1, d2,n2

, . . . ,

dl,1, . . . , dl,nl−1, dl,nl
) ∈ C⊥,

then c · d =
∑l
j=1

∑nj

i=1 cj,idj,i = 0. We want to show that c · Tα−1(d) = 0, i.e.,

Tα−1(d) ∈ C⊥.
Since C has a finite number of codewords, there exists a number s such that

T sα(c) = c. Let

w = T s−1α (c) = (θ−1(c1,2), . . . , θ−1(c1,n1
), θ−1(α−11 c1,1),

θ−1(c2,2), . . . , θ−1(c2,n2
), θ−1(α−12 c2,1), . . . ,

θ−1(cl,2), . . . , θ−1(cl,nl
), θ−1(α−1l cl,1)).

Then,

0 = w · d = (θ−1(c1,2)d1,1 + · · ·+ θ−1(c1,n1
)d1,n1−1 + θ−1(α−11 c1,1)d1,n1

)

+ (θ−1(c2,2)d2,1 + · · ·+ θ−1(c2,n2
)d2,n2−1 + θ−1(α−12 c2,1)d2,n2

)

+ · · ·+ (θ−1(cl,2)dl,1 + · · ·+ θ−1(cl,nl
)dl,nl−1 + θ−1(α−1l cl,1)dl,nl

).

Since θ(0) = 0, we have

0 = [(c1,1, c1,2, . . . , c1,n1) · (α−11 θ(d1,n1), θ(d1,1), . . . , θ(d1,n1−1))]

+ [(c2,1, c2,2, . . . , c2,n1) · (α−12 θ(d2,n2), θ(d2,1), . . . , θ(d2,n2−1))]

+ · · ·+ [(cl,1, cl,2, . . . , cl,nl
) · (α−1l θ(dl,nl

), θ(dl,1), . . . , θ(dl,nl−1))]

= c · Tα−1(d).

Therefore C⊥ is a skew (α−11 , . . . , α−1l )-multi-twisted code. �

Lemma 5.2. Let G be the reduced generator polynomial matrix of a skew α-
multi-twisted code C, A be the l×l upper triangular polynomial matrix satisfying
AG=diag[xn1−α1, . . . , x

nl−αl], and N= lcm(n1, . . . , nl)lcm(o(α1), . . . , o(αl)).
Then G′A = diag [xN − 1, . . . , xN − 1], where

G′ = Gdiag [
xN − 1

xn1 − α1
, . . . ,

xN − 1

xnl − αl
].

Proof. Let I be the l × l identity matrix.

AG = diag [xn1 − α1, . . . , x
nl − αl]

⇒ diag[
xN − 1

xn1 − α1
, . . . ,

xN − 1

xnl − αl
]AG = (xN − 1)I
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⇒ Gdiag[
xN − 1

xn1 − α1
, . . . ,

xN − 1

xnl − αl
]AG = G(xN − 1)I

⇒ G′AG = (xN − 1)G, since xN − 1 ∈ Z(Fq[x; θ])

⇒ G′AG− (xN − 1)G = 0

⇒ (G′A− (xN − 1)I)G = 0.

Since G is an upper triangular polynomial matrix with nonzero diagonal entries
and Fq[x; θ] has no zero divisors, G′A − (xN − 1)I = 0 which implies G′A =
(xN − 1)I = diag [xN − 1, . . . , xN − 1]. �

Theorem 5.3. Let G = [gi,j(x)] be the reduced generator polynomial matrix
of a skew α-multi-twisted code C of length (n1, . . . , nl) over Fq where α =
(α1, . . . , αl) ∈ (F ∗q )l, and let A = [ai,j(x)] be the polynomial matrix which
satisfies AG = diag[xn1 − α1, . . . , x

nl − αl]. Then,

H =


xdeg a1,1a

〈n1,α1〉
1,1 (x) 0 · · · 0

xdeg a2,2a
〈n1,α1〉
1,2 (x) xdeg a2,2a

〈n2,α2〉
2,2 (x)

. . .
...

...
...

. . . 0

xdeg al,la
〈n1,α1〉
1,l (x) xdeg al,la

〈n2,α2〉
2,l (x) · · · xdeg al,la

〈nl,αl〉
l,l (x)


l×l

where each ith column of H is considered modulo xni − α−1i . If ai,i(x) = xni −
αi, then we set xdeg ai,ia

〈ni,αi〉
i,i (x) = xni − α−1i . Then, H is a parity-check

polynomial matrix of C.

Proof. Let N = lcm(n1, . . . , nk)lcm(o(α1), . . . , o(αl)) and G′ be defined as in
Lemma 5.2. From Lemma 5.2 we have G′A = diag[xN − 1, . . . , xN − 1] where

l∑
k=1

gi,k(x)
xN − 1

xnk − αk
ak,j(x) =

{
0, i 6= j

xN − 1, i = j

for 1 ≤ i, j ≤ l. Thus, for a fixed i and j we have

(7)

gi,1(x)
xN − 1

xn1 − α1
a1,j(x) + gi,2(x)

xN − 1

xn2 − α2
a2,j(x) + · · ·+

gi,l(x)
xN − 1

xnl − αl
al,j(x) = 0 (mod xN − 1).

From Theorem 4.4, the coefficient of x0 in Equation (7) is

gi,1 · a〈n1,α1〉
1,j + gi,2 · a〈n2,α2〉

2,j + · · ·+ gi,l · a〈nl,αl〉
l,j = 0,

which implies (gi,1, gi,2, . . . , gi,l) · (a〈n1,α1〉
1,j , a

〈n2,α2〉
2,j , . . . , a

〈nl,αl〉
l,j ) = 0.

Using the same approach as in the proof of Theorem 4.4, if we multiply Equa-
tion (7) with xb from left, then the coefficient of x0 gives T bα((gi,1, gi,2, . . . , gi,l))·
(a
〈n1,α1〉
1,j , a

〈n2,α2〉
2,j , . . . , a

〈nl,αl〉
l,j ) = 0. Hence, (a

〈n1,α1〉
1,j , a

〈n2,α2〉
2,j , . . . , a

〈nl,αl〉
l,j ) is in

C⊥ for all i, j ∈ {1, . . . , l}.
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Thus xdeg aj,j (a
〈n1,α1〉
1,j (x), a

〈n2,α2〉
2,j (x), . . . , a

〈nl,αl〉
l,j (x)), which is exactly the jth

row of H, also belongs to C⊥. Lastly, we need to show that the diagonal entries
of H satisfy the minimum degree condition in Definition 4. This can be shown
by using similar tools as in Theorem 1 of [25]. The same arguments hold for
the skew polynomial case since we are working on left modules. �

Here, we give some concrete examples to illustrate our theoretical results.

Example 5.4. Let θ be an automorphism of F4 defined by θ(β) = β2 for any
β ∈ F4, in this case |〈θ〉| = 2. We consider the skew polynomial ring F4[x; θ]
where F4 = {0, 1, α, α2}. Let

A =

 x4 + α2x3 + α2x+ 1 x3 + x2 + α2x+ α x3 + α2x2 + x
0 x+ 1 α2

0 0 1


3×3

and

G =

 x2 + α2x+ 1 x2 + α2x+ α x3 + α2x2 + 1
0 x3 + x2 + x+ 1 αx3 + α2x2 + αx+ α2

0 0 x4 + 1


3×3

.

The above matrices satisfy AG = diag[x6 − 1, x4 − 1, x4 − 1]. Therefore G is a
generator matrix for a skew GQC code C of length (6, 4, 4) and C is a [14, 5, 4]
code. By Theorem 5.3, the parity-check polynomial matrix for C is

H =

 x4 + αx3 + αx+ 1 0 0
x5 + x4 + α2x+ α2 x+ 1 0
x5 + α2x4 + x3 α2 1


3×3

.

Further, we present their corresponding generator matrices of the code and its
dual

G =


1 α2 1 0 0 0 α α2 1 0 1 0 α2 1
0 1 α 1 0 0 0 α2 α 1 1 1 0 α
0 0 1 α2 1 0 1 0 α α2 α2 1 1 0
0 0 0 1 α 1 α 1 0 α2 0 α 1 1
0 0 0 0 0 0 1 1 1 1 α2 α α2 α


5×14

and

H =



1 α 0 α 1 0 0 0 0 0 0 0 0 0
0 1 α2 0 α2 1 0 0 0 0 0 0 0 0
α2 α2 0 0 1 1 1 1 0 0 0 0 0 0
1 α α 0 0 1 0 1 1 0 0 0 0 0
1 1 α2 α2 0 0 0 0 1 1 0 0 0 0
0 0 0 1 α2 1 α2 0 0 0 1 0 0 0
1 0 0 0 1 α 0 α 0 0 0 1 0 0
α2 1 0 0 0 1 0 0 α2 0 0 0 1 0
1 α 1 0 0 0 0 0 0 α 0 0 0 1


9×14

.
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Now, one can easily check that G ·Htr = 0 and the dual code C⊥ is a [14, 9, 3]
code.

Example 5.5. Next we consider again the skew polynomial ring F4[x; θ] given
in Example 5.4, with the following moderate size matrices:

A =

 x2 + α 1 0
0 x4 + α2 x2 + α
0 0 1


3×3

,

and

G =

 x2 + α x2 + α x4 + α2

0 x4 + α2 x6 + αx4 + α2x2 + 1
0 0 x8 + α


3×3

.

It can be easily shown that AG = diag[x4−α2, x8−α, x8−α]. Therefore G is
a generator matrix for a skew α-multi-twisted code C of length (4, 8, 8), where
α = (α2, α, α),

From Theorem 3.1, dim(C) =
∑
ni − deg(gi,i) = 2 + 4 + 0 = 6. C is a

[20, 6, 4] code. By Theorem 5.3, the parity-check polynomial matrix for C is

H =

 x2 + α2 0 0
α x4 + α 0
0 x6 + 1 α2


3×3

.

Now, we state the following theorem as a note on the minimum distance
bound for 1-generator skew α-multi-twisted codes. Moreover, Corollary 5.7 is
an application of Theorem 2.2 given in [3] for a noncommutative case.

Theorem 5.6. Let C be a skew α-multi-twisted code over Fq with α = (α1, . . .,
αl) and length (n1, . . . , nl). Let xni − αi = ai(x)gi(x) and Cgi be the skew αi-
constacyclic code generated by gi(x) of length ni. Suppose that C is generated
by (f1(x)g1(x), f2(x)g2(x), . . . , fl(x)gl(x)) where fi(x) are in Z(Fq[x; θ]) and

gcrd(fi(x), ai(x)) = 1 for all 1 ≤ i ≤ l. Then, C is a [
∑l
i=1 ni, k, d] code where

k ≥ max{deg(ai(x))} and d ≥ min{d(Cgi)}.

Corollary 5.7. Let α ∈ F ∗q and xn − α = a(x)g(x) in Fq[x; θ]. Let Cg be
the skew α-constacyclic code generated by g(x) of length n. Let C be a skew
α-multi-twisted code over Fq with αi = α and ni = n for all 1 ≤ i ≤ l.
Suppose that C is generated by (f1(x)g(x), f2(x)g(x), . . . , fl(x)g(x)) where fi(x)
are in Z(Fq[x; θ]) and gcrd(fi(x), a(x)) = 1 for all 1 ≤ i ≤ l. Then, C is a
[nl, n− deg(g(x)), d] code where d ≥ n · d(Cg).

Proof. First, since fi(x) ∈ Z(Fq[x; θ]), we have

a(x)fi(x)g(x) = fi(x)a(x)g(x) = 0 (mod xn − α), 1 ≤ i ≤ l.
We need to show that there is no other polynomial p(x) with degree less than

deg(a(x)) that makes either of the components zero, i.e., p(x)fi(x)g(x) 6= 0
(mod xn − α).
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Suppose that we have such a polynomial p(x). Then, p(x)fi(x)g(x) = 0
(mod xn − α) for some i. In this case, a(x)|rp(x)fi(x), thus, p(x)fi(x) =
q(x)a(x) for some q(x) ∈ Fq[x; θ], which implies gcrd(a(x), fi(x)) 6= 1 and
leads to a contradiction. The rest of the proof can be completed in a similar
way as in Theorem 3.2 of [4]. So, we omit the details. �

Now we present some examples in order to illustrate the results obtained
above.

Example 5.8. We consider the skew polynomial ring F4[x; θ] given in Example
5.4.

A factorization of x14 − 1 in F4[x; θ] is as follows

x14−1 = (x6+α2x5+x4+α2x+α)(x8+α2x7+α2x5+x4+α2x3+α2x2+α2x+α2).

Let g(x) = x8 + α2x7 + α2x5 + x4 + α2x3 + α2x2 + α2x+ α2 and f1(x) = x2,
f2(x) = x4 + x2 + 1. Then Cg = (g(x)) is a skew cyclic code with parameters
[14, 6, 7].

We consider the skew α-multi-twisted code C generated by

(f1(x)g(x), f2(x)g(x))

over F4 with length (14, 14) and α = (1, 1). C is a near-optimal code with
parameters [28, 6, 16] (while [28, 6, 17] is optimal, [14]).

Example 5.9. Let θ be an automorphism of F16 defined by θ(β) = β4 for
any β ∈ F16 and F ∗16 = 〈α〉 where α4 = α + 1. We again consider the skew
polynomial ring F16[x; θ]. In this particular case, we have |〈θ〉| = 2 and F θ16 =
{0, 1, α5, α10}.

A factorization of x6 − a5 in F16[x; θ] is as follows

x6 − a5 = (x3 + x2 + αx+ α13)(x3 + x2 + αx+ α7).

Let g(x) = x3 + x2 + αx+ α7. Then Cg = (g(x)) is skew α5-constacyclic code
over F16 with parameters [6, 3, 4].

Let f1(x) = 1, f2(x) = x4+α10x2 and f3(x) = x6+x2+1. Now, we consider
the skew α-multi-twisted code C generated by

(f1(x)g(x), f2(x)g(x), f3(x)g(x))

over F16 with length (6, 6, 6) and α = (α5, α5, α5). C is a [18, 3, 14] code.

6. Skew multi-polycyclic codes and their duals

Polycyclicity is the most general case in terms of cyclicity of linear codes.
Polycyclic codes were first introduced in [29] and referred to as pseudo-cyclic
codes. Since they are direct representations of shortened cyclic codes, with a
rich algebraic structure, there have been many studies on properties of poly-
cyclic codes [2, 5, 24, 26]. In one hand, they may seem not interesting since
they are punctured cyclic codes, but on the other hand being a broad family of
linear codes they surely deserve and are important to be studied for their own
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sake. A structural study is not easy because of their general nature, but getting
some results leads to direct constructions which avoid puncturing processes.
Skew polycyclic codes correspond to left Fq[x, θ]-submodules of Fq[x, θ]/(f(x)),
for any monic polynomial f(x) = xn − v(x) ∈ Fq[x, θ] with a nonzero constant
term. In this case, the companion matrix of f(x) represents the transformation
corresponding to the polycyclic shift with respect to v, and we denote it by Mv,
where v is the coefficient vector of v(x). From now on we take a companion
matrix with its last row identifying it and any linear transformation will be
applied as a right multiplication by its representation matrix. Namely, for

Mv =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
v0 v1 · · · vn−2 vn−1


n×n

we obtain the v-polycyclic shift for a codeword c by

Mv(c) = (c0, c1, . . . , cn−1) ·Mv.

Clearly, any cyclic code is polycyclic with respect to v = (1, 0, . . . , 0) and
any α-constacyclic code is polycyclic with respect to v = (α, 0, . . . , 0).

Recently, polycyclic codes have been extended to noncommutative case [26].
It is shown that a skew polycyclic code generated by a right divisor g(x) of
f(x) is invariant under Mv ◦ Θ, where Θ(c) := (θ(c0), θ(c1), . . . , θ(cn−1)). For
this case, a v-skew polycyclic shift of a codeword c is obtained by

(Mv ◦Θ)(c) = (θ(c0), θ(c1), . . . , θ(cn−1)) ·Mv.

The following lemma can be directly proved by applying the results in [10, 24]
and [26].

Lemma 6.1. Let C be a skew polycyclic code generated by a right divisor g(x)
of f(x) = xn − v(x) ∈ Fq[x, θ]. Then, C⊥ is a sequential code and invariant
under (M−1v )tr ◦Θ.

In order to obtain the generating vector for the dual code of a skew polycyclic
code we need to start with the following lemma.

Lemma 6.2. Let f(x) ∈ Fq[x; θ] be a polynomial with a nonzero constant term.
Then, there exist a central polynomial xN−1 such that f(x)|rxN−1 in Fq[x; θ].

Proof. By Lemma 10 in [9], there exists a polynomial b(x) = (b0 + b1x
m+ · · ·+

bsx
sm)xt where m = |〈θ〉|, bi ∈ F θq and s, t ∈ N such that f(x)|rb(x). Since

f(x) has a nonzero constant term, we get xt = 1 and b(x) ∈ Z(Fq[x; θ]).
We know that Z(Fq[x; θ]) = F θq [xm]. Also, there exists a finite field extension

of F θq where b(x) splits. These imply that there exists a central polynomial

xN − 1 such that b(x)|xN − 1 which completes the proof. �
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Let C be a skew polycyclic code generated by g(x)|rf(x) where deg(g(x)) =
n − k. Let xN − 1 be a central polynomial such that f(x)|rxN − 1. In this
case, C corresponds to the shortened code applied to the last N−n coordinates
of the skew cyclic code C ′ = (g(x)) of length N . Further, the dual code of C
corresponds to the punctured code applied to the last N−(n−k) coordinates of
the dual code C ′⊥, which is generated by a′〈N,1〉(x) where a′(x)g(x) = xN − 1.
The punctured code, being in the form of a sequential code, does not have an
ideal or module structure and multiplication by x does not correspond to the
sequential shift under which the code is invariant. However, in the sequel, we
find a representative generating vector from which a generator matrix for the
dual code can be obtained directly.

Theorem 6.3. Let a(x)g(x) = f(x) = xn − v(x) with a nonzero constant

term and deg(g(x)) = n − k and p(x) = xN−1
f(x) =

∑N−n
i=0 pix

i. Suppose C is a

skew polycyclic code generated by g(x). Then, the dual code C⊥ is generated
by the vector h = (h0, h1, . . . , hn−1) and its n − k − 1 sequential shifts, i.e.,
{h, ((M−1v )tr ◦Θ)(h), . . . , ((M−1v )tr ◦Θ)n−k−1(h)}, where

h0 = p0a0, and hi =

i−1∑
j=0

θi(pN−n−j)θ
N−n+i−j(an−i+j), 1 ≤ i ≤ n− 1.

Proof. Since xN − 1 is a central polynomial such that f(x)|rxN − 1, we have

xN − 1 = g(x)
xN − 1

f(x)
a(x).

This implies that

(8) g(x)(p0 + p1x+ · · ·+ pN−nx
N−n)a(x) = 0 (mod xN − 1).

Thus, the coefficient of x0 in (8) is

g0p0a0 + g1θ(pN−n)θN−n+1(an−1)+

g2(θ2(pN−n)θN−n+2(an−2) + θ2(pN−n−1)θN−n+1(an−1)) + · · ·+
gn−1(θn−1(pN−n)θN−1(a1) + · · ·+ θn−1(pN−2n+2)θN−n+1(an−1)) = 0

which implies g·h = 0. Multiplying (8) by xi from the left, we obtain M i
v(g)·h =

0.
Now, we consider a skew cyclic code C ′ of length N generated by g(x).

From Theorem 4.4, the dual code of C ′ of dimension n − k is also generated

by a′〈N,1〉(x), where a′(x) = xN−1
g(x) = p(x)a(x). Let H ′ be the generator matrix

for C ′⊥ obtained from a′〈N,1〉. Now, we show that the first n coordinates of
a′〈N,1〉 form exactly the coordinates of h in the same order. We have

a′(x) = (p0 + p1x+ · · ·+ pN−nx
N−n)(a0 + a1x+ · · ·+ an−1x

n−1)

= p0a0 + (p0a1 + p1θ(a0))x+ · · ·
+ (pN−nθ

N−n(an−2) + pN−n−1θ
N−n−1(an−1))xN−2
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+ (pN−nθ
N−n(an−1))xN−1.

This implies that

a′〈N,1〉(x) = p0a0 + θ(pN−nθ
N−n(an−1))x+ θ2(pN−nθ

N−n(an−2)

+ pN−n−1θ
N−n−1(an−1))x2 + · · ·+ θn−1(p0a1 + p1θ(a0))xN−1.

Similarly one can show that the first n coordinates of xia′〈N,1〉(x) (mod xN −
1), i.e., the first n coordinates of the ith row of H ′, give the coordinates of
((M−1v )tr ◦θ)i(h) in the same order. This completes the proof since puncturing
C ′⊥ at the last N −n coordinates results in exactly n− k linearly independent
rows. �

The following example illustrates the above theorem.

Example 6.4. Let g(x) = x3 +αx2 +α2|rf(x) = x5 +x2 +α2x+α2 in F4[x; θ]
with |〈θ〉| = 2. In this case, a(x) = x2+αx+1 and f(x) = a(x)g(x). C = (g(x))
becomes a skew v-polycyclic code of length 5, where v = (α2, α2, 1, 0, 0). We

have N = 24, i.e., f(x)|rx24 − 1 and p(x) = x24−1
f(x) . By Theorem 6.3, we get

h = (α, 0, 0, 1, α2) which is exactly the first 5 coordinates of a′〈24,1〉. The parity
check matrix for C can be obtained from {h, ((M−1v )tr◦θ)(h), ((M−1v )tr◦θ)2(h)}
as

H =

 α 0 0 1 α2

0 α2 0 0 1
1 0 α 0 0

 .
Now, we define quasi-cyclic codes obtained from l skew polycyclic compo-

nents of different lengths. We have seen, for the case l = 1, that h is obtained

from the first n coordinates of a′〈N,1〉, where a′(x) = xN−1
f(x) a(x). In order to

easily interpret this situation in the sequel, let us denote the first n coordinates
of a′〈N,1〉 by (a′〈N,1〉)n.

Definition 6. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
)

be a codeword of C. Let θ be an automorphism of Fq, f1 = xn1−v1(x), . . . , fl =
xnl − vl(x) ∈ Fq[x; θ] polynomials with nonzero constant terms and v =
(v1, . . . , vl). If a skew v-multi-polycyclic shift of c,

Tv(c) = (Mv1(θ(c1,1), . . . , θ(c1,n1
)),Mv2(θ(c2,1), . . . , θ(c2,n2

)), . . . ,

Mvl(θ(cl,1), . . . , θ(cl,nl
)))

is also a codeword in C, then C is called a skew v-multi-polycyclic code of
length (n1, n2, . . . , nl).

Reduced generator polynomial matrices of skew v-multi-polycyclic codes can
be defined in a similar way as in the case of skew α-multi-twisted codes.
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Theorem 6.5. Let fi(x) = xni − vi(x) ∈ Fq[x; θ] be polynomials with nonzero
constant terms, v = (v1, . . . , vl), and xN − 1 be a central polynomial such that
fi(x)|rxN − 1 for all 1 ≤ i ≤ l. Let G = [gi,j(x)] be the reduced generator
polynomial matrix of a skew v-multi-polycyclic code C of length (n1, . . . , nl)
over Fq. Let A = [ai,j(x)] be the polynomial matrix which satisfies AG =
diag[f1(x), . . . , fl(x)].

Then,
l∑

k=1

gi,k(x)
xN − 1

fk(x)
ak,j(x) =

{
0, i 6= j

xN − 1, i = j

holds. Moreover, if hi,j = (a
′〈N,1〉
j,i )nj

where a′j,i(x) = xN−1
fj(x)

aj,i(x), then the

block matrix

H =


[h1,1]deg(g1,1) 0 · · · 0

[h2,1]deg(g2,2) [h2,2]deg(g2,2) 0
...

...
...

. . . 0
[hl,1]deg(gl,l) [hl,2]deg(gl,l) · · · [hl,l]deg(gl,l)


l×l

is a parity-check matrix of C, where

[hi,j ]deg(gi,i) :=


hi,j

((M−1vj )tr ◦Θ)(hi,j)
...

((M−1vj )tr ◦Θ)deg(gi,i)−1(hi,j)

 .
Proof. Applying Lemma 5.2, G′A = diag[xN − 1, . . . , xN − 1] implies

l∑
k=1

gi,k(x)
xN − 1

fk(x)
ak,j(x) =

{
0, i 6= j

xN − 1, i = j,

for 1 ≤ i, j ≤ l, where G′ = Gdiag[x
N−1
f1

, . . . , x
N−1
fl

]. For a fixed i and j we

have

(9)

gi,1(x)
xN − 1

f1(x)
a1,j(x) + gi,2(x)

xN − 1

f2(x)
a2,j(x) + · · ·+

gi,l(x)
xN − 1

fl(x)
al,j(x) = 0 (mod xN − 1).

As in Theorem 6.3, the coefficient of x0 is;

gi,1 · (a〈N,1〉1,j )n1
+ gi,2 · (a〈N,1〉2,j )n2

+ · · ·+ gi,l · (a〈N,1〉l,j )nl
= 0,

which implies (gi,1, gi,2, . . . , gi,l) · ((a〈N,1〉1,j )n1 , (a
〈N,1〉
2,j )n2 , . . . , (a

〈N,1〉
l,j )nl

) = 0.

Multiplying Equation (9) with xb from the left, we obtain

T bv ((gi,1, gi,2, . . . , gi,l)) · ((a〈N,1〉1,j )n1 , (a
〈N,1〉
2,j )n2 , . . . , (a

〈N,1〉
l,j )nl

) = 0
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from the coefficient of x0. Hence (hj,1, hj,2, . . . , hj,l) ∈ C⊥ for all j ∈ {1, . . . , l}.
For each diagonal block of H we have ai,i(x)gi,i(x) = fi(x). From Theorem 6.3,

the set {hi,i, ((M−1vi )tr ◦ Θ)(hi,i), . . . , ((M
−1
vi )tr ◦ Θ)deg(gi,i)−1(hi,i)} is linearly

independent for all 1 ≤ i ≤ l. Therefore the rows of H are also linearly

independent. Since the dimension of C⊥ is exactly
∑l
i=0 deg(gi,i(x)), H is a

parity-check polynomial matrix of C. �

Example 6.6. Let us take the skew polynomial ring F4[x; θ] given in Example
5.4. Let f1(x) = x6 +α2x2 +α2, f2(x) = x8 +α2x6 +x4 +αx2 + a and f3(x) =
x10+αx6+x4+α. In this case, we have N = 120, and f1(x), f2(x), f3(x)|rx120−
1. Now let us form the following matrices

A =

 x2 + α2 0 1
0 x4 + αx2 + 1 0
0 0 x2 + α


3×3

,

G =

 x4 + α2x2 + 1 0 x6 + x4 + αx2 + α
0 x4 + x2 + α 0
0 0 x8 + αx6 + x4 + α2x2 + 1


3×3

.

We have AG = diag[f1(x), f2(x), f3(x)]. Then G = [gi,j(x)] is the reduced
generator polynomial matrix of a skew v = (v1, v2, v3)-multi-polycyclic code C
of length (6, 8, 10), where v1 = (α2, 0, α2, 0, 0, 0), v2 = (α, 0, α, 0, 1, 0, α2, 0) and
v3 = (α, 0, 0, 0, 1, 0, a, 0, 0, 0).

Now, by applying the algorithm presented in Theorem 6.5, we obtain a
parity-check matrix for C as

H =

 [h1,1]deg(g1,1) 0 0
[h2,1]deg(g2,2) [h2,2]deg(g2,2) 0

[h3,1]deg(g3,3) [h3,2]deg(g3,3) [h3,3]deg(g3,3)


3×3

where h1,1 = (1, 0, 0, 0, 1, 0), h2,1 = 0, h2,2 = (α2, 0, 0, 0, 1, 0, 1, 0), h3,1 =
(α, 0, 0, 0, 0, 0), h3,2 = 0 and h3,3 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0).

7. Conclusion

In this paper, we derive algorithms to find generators of dual codes of both
skew constacyclic and skew polycyclic codes. Further, we present a generaliza-
tion of the method given in [25] to skew multi-twisted codes and skew multi-
polycyclic codes. Although we have restricted the length n as m |n in Sections
4 and 5 which led us to a concise proof, the generalized formula given in Section
6 also works for the case where m |n. We give examples that are implemented
through computational algebra system MAGMA [6] in order to illustrate the
theorems. Also we note that, GQC codes have shown to be asymptotically
good [18] recently. This result together with the rich algebraic structure of
these families of codes will encourage researchers for further explorations on
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this direction. Challenging and interesting problems would be studying self
duality and finding new codes within these families with optimal parameters.

Acknowledgment. We would like to thank to the anonymous reviewers for
their valuable remarks.
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[18] C. Güneri, F. Özbudak, B. Özkaya, E. Saçıkara, Z. Sepasdar, and P. Solé, Structure and
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