• Title/Summary/Keyword: Pareto efficient

Search Result 83, Processing Time 0.019 seconds

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

Efficient Heuristics for Flowshop Scheduling for Minimizing the Makespan and Total Flowtime of Jobs

  • Hirakawa, Yasuhiro;Ishigaki, Aya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • The problem of scheduling in permutation flowshops has been extensively investigated by many researchers. Recently, attempts are being made to consider more than one objective simultaneously and develop algorithms to obtain a set of Pareto-optimal solutions. Varadharajan et al. (2005) presented a multi-objective simulated-annealing algorithm (MOSA) for the problem of permutation-flowshop scheduling with the objectives of minimizing the makespan and the total flowtime of jobs. The MOSA uses two initial sequences obtained using heuristics, and seeks to obtain non-dominated solutions through the implementation of a probability function, which probabilistically selects the objective of minimizing either the makespan or the total flowtime of jobs. In this paper, the same problem of heuristically developing non-dominated sequences is considered. We propose an effective heuristics based on simulated annealing (SA), in which the weighted sum of the makespan and the total flowtime is used. The essences of the heuristics are in selecting the initial sequence, setting the weight and generating a solution in the search process. Using a benchmark problem provided by Taillard (1993), which was used in the MOSA, these conditions are extracted in a large-scale experiment. The non-dominated sets obtained from the existing algorithms and the proposed heuristics are compared. It was found that the proposed heuristics drastically improved the performance of finding the non-dominated frontier.

Generation Rescheduling Considering Generation Fuel Cost and CO2 Emission Cost (발전연료비용과 탄소배출비용을 고려한 발전력 재배분)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Song, Kyung-Bin;Hwang, Kab-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.591-595
    • /
    • 2013
  • This paper presents a method of generation rescheduling using Newton's Approach which searches the solution of the Lagrangian function. The generation fuel cost and $CO_2$ emission cost functions are used as objective function to reallocate power generation while satisfying several equality and inequality constraints. The Pareto optimum in the fuel cost and emission objectives has a number of non-dominated solutions. The economic effects are analyzed under several different conditions, and $CO_2$ emission reductions offered by the use of storage are considered. The proposed approach can explore more efficient and noninferior solutions of a Multiobjective optimization problem. The method proposed is applied to a 4-machine 6-buses system to demonstrate its effectiveness.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

협동구매를 통한 거래비용감소에 관한 연구

  • 박흥수
    • Journal of Distribution Research
    • /
    • v.2 no.1
    • /
    • pp.143-174
    • /
    • 1997
  • The model applied in this paper is based on the theory of economic order quantity (EOQ). EOQ model is introduced to explain the improvement of the transaction efficiency through the cooperative purchase. We examine explicitly how horizontal cooperation affects vertical transactions. A result of the analysis is that a seller can prefer transacting with a cooperative rather than with each buyer separately, even if he reduces the selling price of the product. Without increasing the demand for the product, this result is that dealing with a cooperative, rather than separately with each buyer, decreases the transaction cost for the seller-buyers system, the cost reduction more than off-setting the effect of price decrease on the sellers profit. For a coopative consisting of any number of buyers, Pareto efficient ordering policies that maximize the joint cost saving for the seller-buyers system are identified. We then discuss the conditions under which a cooperative under consideration can be modified to increase efficiency gain. Next, we relax the assumption that all buyers participate in a single cooperative and examine the issue of how many cooperatives, each consisting of a subset of the buyers, should be formed to maximize the total cost saving for the seller-buyers system. Finally, the issue of shapley value to divide the cooperatives gain among its members is discussed.

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight (처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계)

  • Choi, Ha-Young;Lee, Jongsoo;Park, Juno
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Multi-Objective Genetic Algorithm for Machine Selection in Dynamic Process Planning (동적 공정계획에서의 기계선정을 위한 다목적 유전자 알고리즘)

  • Choi, Hoe-Ryeon;Kim, Jae-Kwan;Lee, Hong-Chul;Rho, Hyung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.84-92
    • /
    • 2007
  • Dynamic process planning requires not only more flexible capabilities of a CAPP system but also higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations by calculating the machine loads. The developed algorithm is based on the multi-objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as the Pareto-optimal solutions). The objective is to satisfy both the minimization number of part movements and the maximization of machine utilization. The algorithm is characterized by a new and efficient method for nondominated sorting through K-means algorithm, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II and branch and bound algorithm.

A multiobjective evolutionary algorithm for the process planning of flexible manufacturing systems (유연제조시스템의 공정계획을 위한 다목적 진화알고리듬)

  • 김여근;신경석;김재윤
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.77-95
    • /
    • 2004
  • This paper deals with the process planning of flexible manufacturing systems (FMS) with various flexibilities and multiple objectives. The consideration of the manufacturing flexibility is crucial for the efficient utilization of FMS. The machine, tool, sequence, and process flexibilities are considered In this research. The flexibilities cause to increase the Problem complexity. To solve the process planning problem, an this paper an evolutionary algorithm is used as a methodology. The algorithm is named multiobjective competitive evolutionary algorithm (MOCEA), which is developed in this research. The feature of MOCEA is the incorporation of competitive coevolution in the existing multiobjective evolutionary algorithm. In MOCEA competitive coevolution plays a role to encourage population diversity. This results in the improvement of solution quality and, that is, leads to find diverse and good solutions. Good solutions means near or true Pareto optimal solutions. To verify the Performance of MOCEA, the extensive experiments are performed with various test-bed problems that have distinct levels of variations in the four kinds of flexibilities. The experiments reveal that MOCEA is a promising approach to the multiobjective process planning of FMS.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.