• Title/Summary/Keyword: Pareto Efficiency

Search Result 82, Processing Time 0.023 seconds

Game Theory Application in Wetland Conservation Across Various Hypothetical City Sizes (다양한 이론적 도시규모에서의 습지 보전을 위한 게임 이론 적용)

  • Ran-Young Im;Ji Yoon Kim;Yuno Do
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The conservation and restoration of wetlands are essential tasks for the sustainable development of human society and the environment, providing vital benefits such as biodiversity maintenance, natural disaster mitigation, and climate change alleviation. This study aims to analyze the strategic interactions and interests among various stakeholders using game theory and to provide significant grounds for policy decisions related to wetland restoration and development. In this study, hypothetical scenarios were set up for three types of cities: large, medium, and small. Stakeholders such as governments, development companies, environmental groups, and local residents were identified. Strategic options for each stakeholder were developed, and a payoff matrix was established through discussions among wetland ecology experts. Subsequently, non-cooperative game theory was applied to analyze Nash equilibria and Pareto efficiency. In large cities, strategies of 'Wetland Conservation' and 'Eco-Friendly Development' were found beneficial for all stakeholders. In medium cities, various strategies were identified, while in small cities, 'Eco-Friendly Development' emerged as the optimal solution for all parties involved. The Pareto efficiency analysis revealed how the optimal solutions for wetland management could vary across different city types. The study highlighted the importance of wetland conservation, eco-friendly development, and wetland restoration projects for each city type. Accordingly, policymakers should establish regulations and incentives that harmonize environmental protection and urban development and consider programs that promote community participation. Understanding the roles and strategies of stakeholders and the advantages and disadvantages of each strategy is crucial for making more effective policy decisions.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Design of RFID Passive Tag Antennas in UHF Band (UHF 대역 수동형 RFID 태그 안테나 설계)

  • Cho Chihyun;Choo Hosung;Park Ikmo;Kim Youngkil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.872-882
    • /
    • 2005
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

The Strategical Scenario Analysis for the Efficient Management of Resource in Open Access (공유자원의 효율적 경영을 위한 전략적 시나리오분석)

  • Choi, Jong-Du
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.3
    • /
    • pp.31-39
    • /
    • 2011
  • This paper attempts to extend such analysis to the rather more difficult problem of optimal management of transnational fish stocks jointly owned by two countries. Transboundary fish such as Mackerel creates an incentive to harvest fish before a competitor does and leads to over-exploitation. This tendency is especially poignant for transnational stocks since, in the absence of an enforceable, international agreement, there is little or no reason for either government or the fishing industry to promote resource conservation and economic efficiency. In the current paper I examine a game theoretic setting in which cooperative management can provide more benefits than noncooperative management. A dynamic model of Mackerel fishery is combined with Nash's theory of two countries cooperative games. A characteristic function game approach is applied to describe the sharing of the surplus benefits from cooperation and noncooperation. A bioeconomic model was used to compare the economic yield of the optimal strategies for two countries, under joint maximization of net benefits in joint ocean. The results suggest as follows. First, the threat points represent the net benefits for two countries in absence of cooperation. The net benefits to Korea and China in threat points are 2,000 billion won(${\pi}^0_{KO}$) and 1,130 billion won(${\pi}^0_{CH}$). Total benefits are 3,130 billion won. Second, if two countries cooperate one with another, they reach the solution payoffs such as Pareto efficient. The net benefits to Korea and China in Pareto efficient are 2,785 billion won(${\pi}^0_{KO}$) and 1,605 billion won(${\pi}^0_{CH}$) or total benefits of 4,390 billion won : a gain of 1,260 billion won. Third, the different price effects under the two scenarios show that total benefit rise as price increases.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

On Efficient Estimation of the Extreme Value Index with Good Finite-Sample Performance

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.57-72
    • /
    • 1999
  • Falk(1994) showed that the asymptotic efficiency of the Pickands estimator of the extreme value index $\beta$ can considerably be improved by a simple convex combination. In this paper we propose an alternative estimator of $\beta$ which is as asymptotically efficient as the optimal convex combination of the Pickands estimators but has a better finite-sample performance. We prove consistency and asymptotic normality of the proposed estimator. Monte Carlo simulations are conducted to compare the finite-sample performances of the proposed estimator and the optimal convex combination estimator.

  • PDF

The Comparative Study for NHPP of Truncated Pareto Software Reliability Growth Model (절단고정시간에 근거한 파레토 NHPP 소프트웨어 신뢰성장모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • Due to the large scale application of software systems, software reliability plays an important role in software developments. In this paper, a software reliability growth model (SRGM) is proposed for testing time. The testing time on the right is truncated in this model. The intensity function, mean-value function, reliability of the software, estimation of parameters and the special applications of Pareto NHPP model are discussed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection, depended on difference between predictions and actual values, were efficient using the mean square error and $R_{SQ}$.

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

Automobile Assembly Sequence System Using Production Information (생산정보를 이용한 자동차 조립 서열시스템에 관한 연구)

  • Ock, Young-Seok;Kim, Byung Soo;Bae, Jun-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.8-15
    • /
    • 2014
  • For zero inventory and mixed assembly production, JIT (Just In Time) production system in Toyota and JIS (Just-In-Sequence) production system in Hyundai motor co. have been proposed in automobile production areas. Even though the production systems are popular in the areas, many subcontract companies producing part-modules for final production at a parent company suffers from excessive or shortage amount of inventory due to the time gap of production and delivery to the parent company. In this study, we propose an efficient real-time assembly sequence system applying a well-known Pareto method using Paint-In information in painting process and daily production planning information. Based on this system, a production line can estimate the shortage amount of UPH (Units Per Hour) at production line and recovers the amount before operating assembly production in the line. The proposed system provides efficiency on productivity compared with the previous system.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.