• Title/Summary/Keyword: Parathion-degrading bacteria

Search Result 4, Processing Time 0.018 seconds

Genetic and Phenotypic Diversity of Parathion-Degrading Bacteria Isolated from Rice Paddy Soils

  • Choi, Min-Kyeong;Kim, Kyung-Duk;Ahn, Kyong-Mok;Shin, Dong-Hyun;Hwang, Jae-Hong;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1679-1687
    • /
    • 2009
  • Three parathion-degrading bacteria and eight pairs of bacteria showing syntrophic metabolism of parathion were isolated from rice field soils, and their genetic and phenotypic characteristics were investigated. The three isolates and eight syntrophic pairs were able to utilize parathion as a sole source of carbon and energy, producing p-nitrophenol as the intermediate metabolite during the complete degradation of parathion. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Burkholderia, Arthrobacter, Pseudomonas, Variovorax, and Ensifer. The chromosomal DNA patterns of the isolates obtained by polymerasechain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from one another. Ten of the isolates had plasmids. All of the isolates and syntrophic pairs were able to degrade parathion-related compounds such as EPN, p-nitrophenol, fenitrothion, and methyl parathion. When analyzed with PCR amplification and dot-blotting hybridization using various primers targeted for the organophosphorus pesticide hydrolase genes of previously reported isolates, most of the isolates did not show positive signals, suggesting that their parathion hydrolase genes had no significant sequence homology with those of the previously reported organosphophate pesticide-degrading isolates.

Characteristics of the Parathion Degrading Pseudomonas rhodesiae H5. (파라치온 분해 세균 Pseudomonas rhodesiae H5의 특성)

  • 윤남경;박경량
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.582-588
    • /
    • 2004
  • Eighty one bacterial strains of parathion degrading bacteria were isolated from soil samples that were contaminated with pesticide in Daejeon area. Among them, one bacterial strain was finally selected in media containing parathion as the sole source of carbon and energy, and this strain was identified as Pseudomonas rhodesiae H5 through physiological and biochemical tests, and analysis of its 16S rRNA sequence. Pseudomonas rhodesiae H5 was able to utilize various carbohydrates but did not utilize sorbose as sole carbon source. Pseudomonas rhodesiae H5 was resistance to ampicillin, spectinomycin, and mitomycin C but sensitive to kanamycin and chloramphenicol. And this strain showed high resistance up to several milligrams of heavy metals such as $BaCl_2$, LiCl, and $MnSO_4$. Optimal growth condition for temperature and pH of P. rhodesiae H5 was 3$0^{\circ}C$, and pH 7.0, respectively. It can be presumed that P. rhodesiae H5 hydrolyzed an organophosphate bond of parathion, forming p-nitrophenol, and then metabolized via ortho-ring cleavage mechanism.

Genetic and Phenotypic Diversity of Fenitrothion-Degrading Bacteria Isolated from Soils

  • Kim, Kyung-Duk;Ahn, Jae-Hyung;Kim, Tae-Sung;Park, Seong-Chan;Seong, Chi-Nam;Song, Hong-Gyu;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Twenty-seven fenitrothion-degrading bacteria were isolated from different soils, and their genetic and phenotypic characteristics were investigated. Analysis of the 16S rDNA sequence showed that the isolates were related to members of the genera Burkholderia, Pseudomonas, Sphingomonas, Cupriavidus, Corynebacterium, and Arthrobacter. Among the 27 isolates, 12 different chromosomal DNA fingerprinting patterns were obtained by polymerase chain reaction(PCR) amplification of repetitive extra genic palindromic(REP) sequences. The isolates were able to utilize fenitrothion as a sole source of carbon and energy, producing 3-methyl-4-nitrophenol as the intermediate metabolite during the complete degradation of fenitrothion. Twenty-two of 27 isolates were able to degrade parathion, methyl-parathion, and p-nitrophenol but only strain BS2 could degrade EPN(O-ethyl-O-p-nitrophenyl phenylphosphorothioate) as a sole source of carbon and energy for growth. Eighteen of the 27 isolates had plasmids. When analyzed with PCR amplification and dot-blotting hybridization using various specific primers targeted to the organophosphorus pesticide hydrolase genes of the previously reported isolates, none of the isolates showed positive signals, suggesting that the corresponding genes of our isolates had no significant sequence homology with those of the previously isolated organophosphate pesticide-degrading bacteria.

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.