• Title/Summary/Keyword: Paraoxon detection

Search Result 6, Processing Time 0.022 seconds

Organophosphorus Compounds Detection Using Suspended SWNT Films (부양형 탄소나노튜브 필름을 이용한 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.346-351
    • /
    • 2013
  • We developed a one-step method for fabrication of addressable suspended SWNT films and demonstrate excellent detection performance of paraoxon based on OPH-immobilized SWNT films for environmental monitoring. For dispersed SWNT suspension, COOH-SWNT was prepared by the oxidation of carbon nanotubes using acid treatment and sonication. Suspended SWNT-film was fabricated between cantilever electrodes by dielectrophoretic force and surface tension of the water meniscus. After that, OPH were immobilized on suspended SWNT-films by nonspecific binding for enzymatic hydrolysis of paraoxon. The electrical properties of the SWNT films were measured in real time at room temperature. Structurally suspended SWNT films from substrate surface made possible rapid and highly sensitive detection of target molecules with increased convectional and diffusional fluxes of the molecules and with a large binding surface area. SWNT film FET resulted in a real-time, label-free, and electrical detection of paraoxon to the concentration of ca. $10{\mu}m$ with a step-wise rapid response time of several seconds.

Development of Prototype Biosensor for The Detection of Organophosporus Compounds (유기인화합물 측정용 광바이오센서 개발)

  • 최정우;김종민;이원홍;김영기
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.158-161
    • /
    • 2002
  • In this study, a prototype fiber-optic biosensor was fabricated using the inhibition of enzyme reaction by organophosphorus compounds to detect organophosphorus compounds, which is nervous toxic material an? is used as chemical weapon and pesticide. Enzyme, substrate, and inhibitor for enzyme reaction were acetylcholinesterase (key enzyme in nervous cell), acetylthiocholine iodide, and paraoxon (a kind of organophosphorus compounds), respectively. The detection principle of sensor is the detection of enzyme reaction inhibited by organophosphorus compounds by the quantitative measurement of acetic acid, which was achieved by absorbance measurement using litmus solution that maximum absorbance band is changed by pH. To fabricate prototype fiber-optic biosensor, high bright LED and photodiode was used as light source and light intensity detector, respectively. From the experimental results using a prototype biosensor, the linear change of sensor signal was obtained in a range of 0-2 ppm inhibitor concentrations. From these results, it was verified that the quantitative measurement of organophosphorus compounds could be achieved fast (within 2 minutes) and accurately by a prototype fiber-optic biosensor.

Flow Injection Biosensor for the Detection of Anti-Cholinesterases

  • Chung, Myung-Sun;Lee, Yong-Tae;Lee, Hye-Sung
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.296-302
    • /
    • 1998
  • A potentiometric flow injection biosensor for the analysis of anti-cholinesterases (anti-ChEs), based on inhibition of enzyme activity, was developed. The sensor system consists of a reactor with acetylcholinesterase (AChE) immobilized on controlled pore glass and a detector with an $H^{+}-selective$ PVC-based membrane electrode. The principle of the analysis is based on the fact that the degree of inhibition of AChE by an anti-ChE is dependent on the concentration of the anti-ChE in contact with AChE. The sensor system was optimized by changing systematically the operating parameters of the sensor to evaluate the effect of the changes on sensor response to ACh. The optimized biosensor was applied to the analysis of paraoxon, an organophosphorus pesticide. Treatment of the inhibited enzyme with pyridine-2-aldoxime fully restored the enzyme activity allowing repeated use of the sensor.

  • PDF

Recent Applications of Molecularly Imprinted Polymers (MIPs) on Screen-Printed Electrodes for Pesticide Detection

  • Adilah Mohamed Nageib;Amanatuzzakiah Abdul Halim;Anis Nurashikin Nordin;Fathilah Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The overuse of pesticides in agricultural sectors exposes people to food contamination. Pesticides are toxic to humans and can have both acute and chronic health effects. To protect food consumers from the adverse effects of pesticides, a rapid monitoring system of the residues is in dire need. Molecularly imprinted polymer (MIP) on a screen-printed electrode (SPE) is a leading and promising electrochemical sensing approach for the detection of several residues including pesticides. Despite the huge development in analytical instrumentation developed for contaminant detection in recent years such as HPLC and GC/MS, these conventional techniques are time-consuming and labor-intensive. Additionally, the imprinted SPE detection system offers a simple portable setup where all electrodes are integrated into a single strip, and a more affordable approach compared to MIP attached to traditional rod electrodes. Recently, numerous reviews have been published on the production and sensing applications of MIPs however, the research field lacks reviews on the use of MIPs on electrochemical sensors utilizing the SPE technology. This paper presents a distinguished overview of the MIP technique used on bare and modified SPEs for the detection of pesticides from four recent publications which are malathion, chlorpyrifos, paraoxon and cyhexatin. Different molecular imprint routes were used to prepare these biomimetic sensors including solution polymerization, thermal polymerization, and electropolymerization. The unique characteristics of each MIP-modified SPE are discussed and the comparison among the findings of the papers is critically reviewed.

Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection (바이오센서 적용을 위한 미생물이 고정된 부양형 탄소나노튜브 필름 제작과 유기인 화합물 검출)

  • Kim, Intae;An, Taechang;Kim, Chang Sup;Cha, Hyung Joon;Kim, Jin Ho;Lim, Soo Taek;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Microbes have been used extensively in various fields of researches and industries but has not been used widely for microfluidic biosensor applications because it is difficult to immobilize properly to a small space. Therefore, we developed a microbial immobilization method for microfluidic devices using single-walled nanotubes and dielectrophoretic force. Single-walled nanotubes and Escherichia coli were aligned between two cantilever electrodes by a positive dielectrophoretic force resulting in a film of single-walled nanotubes with attached Escherichia coli. The optimal condition of film formation without a cell lysis was investigated. Diameter of single-walled nanotubes and electric field (intensity and duration of application) had an effect on the cell viability. On the other hand, the cell concentration of the suspension did not affect the cell viability. Paraoxon was detected using single-walled nanotubes film with attached Escherichia coli that expressed organophosphorus hydrolase. This film which is suspended from the substrate showed faster response time than sensors that are not suspended from the substrate.