Acknowledgement
This research was supported by FRGS-RACER Grant Scheme (RACER/1/2019/TK04/UIAM//2) from the Ministry of Higher Education, Malaysia.
References
- B. K. Singh and A. Walker, FEMS Microbiol. Rev., 2006, 30(3), 428-471. https://doi.org/10.1111/j.1574-6976.2006.00018.x
- K. M. Soropogui, A. T. Jameel, and W. W. A. W. Salim, Indones. J. Electr. Eng. Informatics, 2018, 6(2), 161-171. https://doi.org/10.52549/ijeei.v6i2.465
- J. Bao, C. Hou, M. Chen, J. Li, D. Huo, M. Yang, X. Luo, and Y. Lei, J. Agric. Food Chem., 2015, 63(47), 10319-10326. https://doi.org/10.1021/acs.jafc.5b03971
- N. A. Kamaruzaman, Y. H. Leong, M. H. Jaafar, H. R. M. Khan, N. A. A. Rani, M. F. Razali, and M. I. A. Majid, BMJ Open, 2020, 10, e036048.
- T. A. Samuels and S. O. Obare, Advances in Analytical Methods for Organophosphorus Pesticide Detection, in M. Stoytcheva (ed.), Pesticides in the Modern World - Trends in Pesticides Analysis, InTechOpen, London, 2011.
- M. F. F. Bernardes, M. Pazin, L. C. Pereira, and D. J. Dorta, Impact of Pesticides on Environmental and Human Health, in A. C. Andreazza, G. Scola (eds.), Toxicology Studies - Cells, Drugs and Environment, InTechOpen, London, 2015.
- W. Naksen, T. Prapamontol, A. Mangklabruks, S. Chantara, P. Thavornyutikarn, M. G. Robson, P. B. Ryan, D. B. Barr, and P. Panuwet, J. Chromatogr. B, 2016, 1025, 92-104. https://doi.org/10.1016/j.jchromb.2016.04.045
- M. F. Bouchard, D. C. Bellinger, R. O. Wright, and M. G. Weisskopf, Pediatrics, 2010, 125(6), e1270-e1277. https://doi.org/10.1542/peds.2009-3058
- B. Dinham, The Pesticide Hazard: A Global Health and Environmental Audit, Zed Books, London, 1993.
- C. Malitesta, E. Mazzotta, R. A. Picca, A. Poma, I. Chianella, and S. A. Piletsky, Anal. Bioanal. Chem., 2012, 402(5), 1827-1846. https://doi.org/10.1007/s00216-011-5405-5
- S. A. Piletsky, S. Alcock, and A. P. F. Turner, Trends Biotechnol., 2001, 19(1), 9-12. https://doi.org/10.1016/S0167-7799(00)01523-7
- L. Ye and K. Haupt, Anal. Bioanal. Chem., 2004, 378(8),1887-1897. https://doi.org/10.1007/s00216-003-2450-8
- B. T. S. Bui and K. Haupt, Anal. Bioanal. Chem., 2010, 398(6), 2481-2492. https://doi.org/10.1007/s00216-010-4158-x
- L. Ye and K. Mosbach, Chem. Mater., 2008, 20(3), 859- 868. https://doi.org/10.1021/cm703190w
- J. C. C. Yu and E. P. C. Lai, Toxins, 2010, 2(6), 1536- 1553. https://doi.org/10.3390/toxins2061536
- S. Roshan, A. Mujahid, A. Afzal, I. Nisar, M. N. Ahmad, T. Hussain, and S. Z. Bajwa, Adv. Polymer Technol., 2019, 9432412.
- M. A. Morales and J. M. Halpern, Bioconjugate Chem., 2019, 29(10), 3231-3239. https://doi.org/10.1021/acs.bioconjchem.8b00592
- S. Yang, Y. Wang, Y. Jiang, S. Li, and W. Liu, Polymers, 2016, 8(6), 216.
- Y. A. Olcer, M. Demirkurt, M. M. Demir, and A. E. Eroglu, RSC Adv., 2017, 7, 31441-31447. https://doi.org/10.1039/C7RA05254E
- L.-X. Yi, R. Fang, and G.-H. Chen, J. Chromatogr. Sci., 2013, 51(7), 608-618. https://doi.org/10.1093/chromsci/bmt024
- P. S. Sharma, A. Wojnarowicz, W. Kutner, and F. D'Souza, Molecularly Imprinted Catalysts, 2016, 183-210.
- B. Feier, A. Blidar, A. Pusta, P. Carciuc, and C. Cristea, Biosensors, 2019, 9(1), 31.
- A. Sarafraz-Yazdi and N. Razavi, TrAC - Trends Anal. Chem., 2015, 73, 81-90. https://doi.org/10.1016/j.trac.2015.05.004
- O. Parkash, C. Y. Yean, and R. H. Shueb, Diagnostics, 2014, 4(4), 165-180. https://doi.org/10.3390/diagnostics4040165
- F.-D. Munteanu, A. M. Titoiu, J. L. Marty, and A. Vasilescu, Sensors, 2018, 18(3), 901.
- M. Peeters, Austin J. Bios. Bioelectron., 2015, 1(3), 1011.
- R. D. Crapnell, A. Hudson, C. W. Foster, K. Eersels, B. van Grinsven, T. J. Cleij, C. E. Banks, and M. Peeters, Sensors, 2019, 19(5), 1204.
- G. Erturk and B. Mattiasson, Sensors, 2017, 17(2), 288.
- M. I. Malik, H. Shaikh, G. Mustafa, and M. I. Bhanger, Sep. Purif. Rev., 2019, 48(3), 179-219. https://doi.org/10.1080/15422119.2018.1457541
- S. Li, Q. Luo, Y. Liu, Z. Zhang, G. Shen, H. Wu, A. Chem, X. Liu, and A. Zhang, Polymers, 2017, 9(8), 359.
- O. Jamieson, T. C. C. Soares, B. A. de Faria, A. Hudson, F. Mecozzi, S. J. Rowley-Neale, C. E. Banks, J. Gruber, K. Novakovic, M. Peeters, and R. D. Crapnell, Chemosensors, 2020, 8(1), 5.
- Y. Aghoutane, A. Diouf, L. Osterlund, B. Bouchikhi, and N. E. Bari, Bioelectrochemistry, 2019, 132, 107404.
- D. Capoferri, R. Alvarez-diduk, M. del Carlo, D. Compagnone, and A. Merkoci, Anal. Chem., 2018, 90(9), 5850-5856. https://doi.org/10.1021/acs.analchem.8b00389
- C. Zhang, F. Zhao, Y. She, S. Hong, X. Cao, L. Zheng, S. Wang, T. Li, M. Wang, M. Jin, F. Jin, H. Shao, and J. Wang, Sens. Actuators B Chem., 2018, 284, 13-22. https://doi.org/10.1016/j.snb.2018.12.075
- A. Zamora-Galvez, A. Ait-Lahcen, L. A. Mercante, E. Morales-Narvaez, A. Amine, and A. Merkoci, Anal. Chem., 2016, 88(7), 3578-3584. https://doi.org/10.1021/acs.analchem.5b04092
- L. Devkota, L. T. Nguyen, T. Thi, and B. Piro, Electrochim. Acta, 2018, 270, 535-542. https://doi.org/10.1016/j.electacta.2018.03.104
- A. G. Ayankojo, J. Reut, V. Ciocan, A. Opik, and V. Syritski, Talanta, 2019, 209, 120502.
- S. C. R. Rebelo, R. Costa, A. T. S. C. Brand, A. F. Silva, M. G. F. Sales, and C. M. Pereira, Anal. Chim. Acta, 2019, 1082, 126-135. https://doi.org/10.1016/j.aca.2019.07.050
- D. Kumar and B. B. Prasad, Sens. Actuators B Chem., 2012, 171-172, 1141-1150.
- K. Phonklam, R. Wannapob, W. Sriwimol, P. Thavarungkul, and T. Phairatana, Sens. Actuators B Chem., 2019, 308, 127630.
- B. V. M. Silva, B. A. G. Rodriguez, G. F. Sales, M. D. P. T. Sotomayor, and R. F. Dutra, Biosens. Bioelectron., 2016, 77, 978-985. https://doi.org/10.1016/j.bios.2015.10.068
- A. R. Cardoso, M. H. de Sa, and M. G. F. Sales, Bioelectrochemistry, 2019, 130, 107287.
- A. Motaharian, M. R. M. Hosseini, and K. Naseri, Sens. Actuators B Chem., 2019, 288, 356-362. https://doi.org/10.1016/j.snb.2019.03.007
- K. Fu, R. Zhang, J. He, H. Bai, and G. Zhang, Biosens. Bioelectron., 2019, 143, 111636.
- F. Lopes, J. G. Pacheco, P. Rebelo, and C. Deleruematos, Sens. Actuators B Chem., 2017, 243, 745-752. https://doi.org/10.1016/j.snb.2016.12.031
- M. Roushani, Z. Jalilian, and A. Nezhadali, Colloids Surf. B Biointerfaces, 2018, 172, 594-600. https://doi.org/10.1016/j.colsurfb.2018.09.015
- V. M. Serrano, A. R. Cardoso, M. Diniz, and M. G. F. Sales, Sens. Actuators B Chem., 2020, 311, 127902.
- M. Amatatongchai, J. Sitanurak, W. Sroysee, S. Sodanat, S. Chairam, P. Jarujamrus, D. Nacapricha, and P. A. Lieberzeit, Anal. Chim. Acta, 2019, 1077, 255-265. https://doi.org/10.1016/j.aca.2019.05.047
- N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, J. Chem. Educ., 2018, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361
- M. G. Barron and K. B. Woodburn, Ecotoxicology of chlorpyrifos, in G. W. Ware (ed.), Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, 1995, 144.
- M. L. Yola and N. Atar, J. Electrochem. Soc., 2017, 164(6), B223-B229. https://doi.org/10.1149/2.1411706jes
- J. Shi and D. Marshall, Surface Modification Approaches for Electrochemical Biosensors, in P. A. Serra (ed.), Biosensors - Emerging Materials and Applications, InTech, London, 2011.
- S. Nagabooshanam, S. Roy, A. Mathur, I. Mukherjee, S. Krishnamurthy, and L. M. Bharadwaj, Sci. Rep., 2019, 9, 19862.
- A. Kumaravel and M. Chandrasekaran, J. Agric. Food Chem., 2015, 63(27), 6150-6156. https://doi.org/10.1021/acs.jafc.5b02057
- L. G. Zamfir, L. Rotariu, and C. Bala, Biosens. Bioelectron., 2011, 26(8), 3692-3695. https://doi.org/10.1016/j.bios.2011.02.001
- Sivanesan A. and Abraham J. S., Ind. Biotechnol., 2009, 9(1), 31-36.
- Y. P. Li, R. X. Zhao, G. Y. Han, and Y. M. Xiao, Electroanalysis, 2018, 30(10), 2258-2264. https://doi.org/10.1002/elan.201800204
- R. Khaksarinejad, A. Mohsenifar, T. Rahmani-Cherati, R. Karami, and M. Tabatabaei, Appl. Biochem. Biotechnol., 2015, 176, 359-371. https://doi.org/10.1007/s12010-015-1579-1
- F. Arduini, D. Neagu, V. Scognamiglio, S. Patarino, D. Moscone, and G. Palleschi, Chemosensors, 2015, 3(2), 129-145. https://doi.org/10.3390/chemosensors3020129
- C. Zhang, F. Zhao, Y. He, Y. She, S. Hong, J. Ma, M. Wang, Z. Cao, T. Li, A. M. A. Ei-Aty, J. Ping, Y. Ying, and J. Wang, Microchim. Acta, 2019, 186(8), 504.
- J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, and T.-L. Ren, Sens. Actuators B Chem., 2018, 262, 125-136. https://doi.org/10.1016/j.snb.2018.01.164
- S. K. Bhardwaj, R. Chauhan, P. Yadav, S. Ghosh, A. K. Mahapatro, J. Singh, and T. Basu, Biomater Sci., 2019, 7, 1598-1606. https://doi.org/10.1039/C8BM01406J
- Z. Cui, Y. Sun, N. Ge, J. Zhang, Y. Liu, A. Li, and Y. Cao, Se Pu, 2014, 32(8), 855-860.
- Y. N. Ma, W. J. Gui, and G. N. Zhu, Anal. Methods, 2015, 7, 2108-2113.
- Y. Y. Zou and A. Schreiber, Quantitation and Identification of Organotin Compounds in Food, Water, and Textiles Using LC-MS/MS, AB Sciex, Concord, Canada, 2012, 6690212-01.
- D. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, Biosens. Bioelectron., 2010, 25(11), 2503-2508. https://doi.org/10.1016/j.bios.2010.04.018
- S. Ebrahim, R. El-Raey, A. Hefnawy, H. Ibrahim, M. Soliman, and T. M. Abdel-Fattah, Synth. Met., 2014, 190, 13-19. https://doi.org/10.1016/j.synthmet.2014.01.021
- R. Bala, M. Kumar, K. Bansal, R. K. Sharma, and N. Wangoo, Biosens. Bioelectron., 2016, 85, 445-449. https://doi.org/10.1016/j.bios.2016.05.042
- T. Alizadeh, Thin Solid Films, 2010, 518(21), 6099-6106.
- J.-L. Wang, Q. Xia, A.-P. Zhang, X.-Y. Hu, and C.-M. Lin, J. Zhejiang Univ. Sci. B, 2012, 13, 267-273. https://doi.org/10.1631/jzus.B11a0180
- G. Odian, Principles of Polymerization, 4th ed., Wiley, 2004. DOI:10.1002/047147875X
- W. I. B. W. Ibrahim and I. M. Mujtaba, Comput. Aided Chem. Eng., 2012, 31, 1326-1330. https://doi.org/10.1016/B978-0-444-59506-5.50096-1
- D. F. Argenta, T. C. dos Santos, A. M. Campos, and T. Caon, Hydrogel Nanocomposite Systems, Nanocarriers for Drug Delivery, Elsevier, 2019, 81-131.
- W.-F. Su, Radical Chain Polymerization, Principles of Polymer Design and Synthesis. Lecture Notes in Chemistry, Springer, Berlin, Heidelberg, 2013.
- H. Riazi, A. A. Shamsabadi, P. Corcoran, M. C. Grady, A. M. Rappe, and M. Soroush, Processes, 2018, 6(1), 3.
- H. C. Yu, X. Y. Huang, F. H. Lei, X. C. Tan, Y. C. Wei, and H. Li, Electrochim. Acta, 2014, 141, 45-50. https://doi.org/10.1016/j.electacta.2014.07.050
- N. Yucel, H. Gulen, and P. C. Hatir, 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 2019, 1-4.
- T. Pasang and C. Ranganathaiah, J. Phys.: Conf. Ser., 2015, 618, 012033.
- H.-H. Pan, W.-C. Lee, C.-Y. Hung, and C.-C. Hwang, J. Chem., 2007, 4, 632904.
- S. I. Khan, R. R. Chillawar, K. K. Tadi, and R.V. Motghare, Curr. Anal. Chem., 2018, 14(5), 474-482. https://doi.org/10.2174/1573411013666171117163609
- M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco, TrAC - Trends Anal. Chem., 2004, 23(1), 36-48. https://doi.org/10.1016/S0165-9936(04)00102-5
- M. A. Beluomini, J. L. da Silva, A. C. de Sa, E. Buffon, T. C. Pereira, and N. R. Stradiotto, J Electroanal. Chem., 2019, 840, 343-366. https://doi.org/10.1016/j.jelechem.2019.04.005
- E. Pratiwi, A. Mulyasuryani, and A. Sabarudin, J. Pure Appl. Chem. Res., 2018, 7(1), 12-18. https://doi.org/10.21776/ub.jpacr.2018.007.01.364
- M. Babaiee, M. Pakshir, and B. Hashemi, Synth. Met., 2015, 199, 110-120. https://doi.org/10.1016/j.synthmet.2014.11.012
- S. M. Sayyah, A. B. Khaliel, R. E. Azooz, and F. Mohame, Electropolymerization of Some Ortho-Substituted Phenol Derivatives on Pt-Electrode from Aqueous Acidic Solution; Kinetics, Mechanism, Electrochemical Studies and Characterization of the Polymer Obtained, Electropolymerization, IntechOpen, 2011.
- V. Ganesh, S. K. Pal, S. Kumar, and V. Lakshminarayanan, Electrochim. Acta, 2006, 52(9), 194-321. https://doi.org/10.1016/j.electacta.2006.04.058
- E. Mavroudakis, D. Cuccato, and D. Moscatelli, Determination of Reaction Rate Coefficients in Free-Radical Polymerization Using Density Functional Theory, Computational Quantum Chemistry, Elsevier, 2019, 47-98.
- M. Guc and G. Schroeder, World J. Res. Rev., 2017, 5(6), 36-47.
- Z. O. Uygun and Y. Dilgin, Sens. Actuators B Chem., 2013, 188, 78-84. https://doi.org/10.1016/j.snb.2013.06.075
- B. Cui, P. Liu, X. Liu, S. Liu, and Z. Zhang, J. Mater. Res. Technol., 2020, 9(6), 12568-12584. https://doi.org/10.1016/j.jmrt.2020.08.052
- B. Huang, R. Ling, Y. Cheng, J. Wen, Y. Dai, W. Huang, S. Zhang, X. Lu, Y. Luo, and Y. Jiang, Mol. Ther. - Methods Clin. Dev., 2020, 18, 367-375. https://doi.org/10.1016/j.omtm.2020.06.013
- T. N. Chatterjee and R. Bandyopadhyay, Trans. Indian Natl. Acad. Eng., 2020, 5(2), 225-228. https://doi.org/10.1007/s41403-020-00125-7
- F. Ning, T. Qiu, Q. Wang, H. Peng, Y. Li, X. Wu, Z. Zhang, L. Chem, and H. Xiong, Food Chem., 2017, 221, 1797-1804. https://doi.org/10.1016/j.foodchem.2016.10.101
- X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S. M. Shah, and J. Chen, J. Chromatogr. A, 2014, 1359, 1-7. https://doi.org/10.1016/j.chroma.2014.07.007
- X. Li and K. H. Row, J. Chromatogr. B, 2017, 1068-1069, 56-63. https://doi.org/10.1016/j.jchromb.2017.10.012
- X. Zhu, Y. Zeng, Z. Zhang, Y. Yang, Y. Zhai, H. Wang, L. Liu, J. Hu, and L. Li, Biosens. Bioelectron., 2018, 108, 38-45. https://doi.org/10.1016/j.bios.2018.02.032
- L. M. Madikizela, S. Ncube, and L. Chimuka, Compr. Anal. Chem., 2019, 86, 337-364. https://doi.org/10.1016/bs.coac.2019.05.007
- V. M. Ekomo, C. Branger, R. Bikanga, A. Florea, G. Istamboulie, C. Calas-Blanchard, T. Noguer, A. Sarbu, and H. Brisset, Biosens. Bioelectron., 2018, 112, 156-161. https://doi.org/10.1016/j.bios.2018.04.022
- M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, and G. Liu, Front Chem., 2020, 8, 1-20. https://doi.org/10.3389/fchem.2020.00001
- J. W. Lowdon, H. Dilien, P. Singla, M. Peeters, T. J. Cleiji, B. van Grinsven, and K. Eersels, Sens. Actuators B Chem., 2020, 325, 128973.