DOI QR코드

DOI QR Code

Recent Applications of Molecularly Imprinted Polymers (MIPs) on Screen-Printed Electrodes for Pesticide Detection

  • Adilah Mohamed Nageib (Department of Chemical Engineering and Sustainability, Faculty of Engineering, International Islamic University Malaysia (IIUM)) ;
  • Amanatuzzakiah Abdul Halim (Department of Chemical Engineering and Sustainability, Faculty of Engineering, International Islamic University Malaysia (IIUM)) ;
  • Anis Nurashikin Nordin (Department of Electrical and Computer Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM)) ;
  • Fathilah Ali (Department of Chemical Engineering and Sustainability, Faculty of Engineering, International Islamic University Malaysia (IIUM))
  • Received : 2022.08.08
  • Accepted : 2022.10.08
  • Published : 2023.02.28

Abstract

The overuse of pesticides in agricultural sectors exposes people to food contamination. Pesticides are toxic to humans and can have both acute and chronic health effects. To protect food consumers from the adverse effects of pesticides, a rapid monitoring system of the residues is in dire need. Molecularly imprinted polymer (MIP) on a screen-printed electrode (SPE) is a leading and promising electrochemical sensing approach for the detection of several residues including pesticides. Despite the huge development in analytical instrumentation developed for contaminant detection in recent years such as HPLC and GC/MS, these conventional techniques are time-consuming and labor-intensive. Additionally, the imprinted SPE detection system offers a simple portable setup where all electrodes are integrated into a single strip, and a more affordable approach compared to MIP attached to traditional rod electrodes. Recently, numerous reviews have been published on the production and sensing applications of MIPs however, the research field lacks reviews on the use of MIPs on electrochemical sensors utilizing the SPE technology. This paper presents a distinguished overview of the MIP technique used on bare and modified SPEs for the detection of pesticides from four recent publications which are malathion, chlorpyrifos, paraoxon and cyhexatin. Different molecular imprint routes were used to prepare these biomimetic sensors including solution polymerization, thermal polymerization, and electropolymerization. The unique characteristics of each MIP-modified SPE are discussed and the comparison among the findings of the papers is critically reviewed.

Keywords

Acknowledgement

This research was supported by FRGS-RACER Grant Scheme (RACER/1/2019/TK04/UIAM//2) from the Ministry of Higher Education, Malaysia.

References

  1. B. K. Singh and A. Walker, FEMS Microbiol. Rev., 2006, 30(3), 428-471.  https://doi.org/10.1111/j.1574-6976.2006.00018.x
  2. K. M. Soropogui, A. T. Jameel, and W. W. A. W. Salim, Indones. J. Electr. Eng. Informatics, 2018, 6(2), 161-171.  https://doi.org/10.52549/ijeei.v6i2.465
  3. J. Bao, C. Hou, M. Chen, J. Li, D. Huo, M. Yang, X. Luo, and Y. Lei, J. Agric. Food Chem., 2015, 63(47), 10319-10326.  https://doi.org/10.1021/acs.jafc.5b03971
  4. N. A. Kamaruzaman, Y. H. Leong, M. H. Jaafar, H. R. M. Khan, N. A. A. Rani, M. F. Razali, and M. I. A. Majid, BMJ Open, 2020, 10, e036048. 
  5. T. A. Samuels and S. O. Obare, Advances in Analytical Methods for Organophosphorus Pesticide Detection, in M. Stoytcheva (ed.), Pesticides in the Modern World - Trends in Pesticides Analysis, InTechOpen, London, 2011. 
  6. M. F. F. Bernardes, M. Pazin, L. C. Pereira, and D. J. Dorta, Impact of Pesticides on Environmental and Human Health, in A. C. Andreazza, G. Scola (eds.), Toxicology Studies - Cells, Drugs and Environment, InTechOpen, London, 2015. 
  7. W. Naksen, T. Prapamontol, A. Mangklabruks, S. Chantara, P. Thavornyutikarn, M. G. Robson, P. B. Ryan, D. B. Barr, and P. Panuwet, J. Chromatogr. B, 2016, 1025, 92-104.  https://doi.org/10.1016/j.jchromb.2016.04.045
  8. M. F. Bouchard, D. C. Bellinger, R. O. Wright, and M. G. Weisskopf, Pediatrics, 2010, 125(6), e1270-e1277.  https://doi.org/10.1542/peds.2009-3058
  9. B. Dinham, The Pesticide Hazard: A Global Health and Environmental Audit, Zed Books, London, 1993. 
  10. C. Malitesta, E. Mazzotta, R. A. Picca, A. Poma, I. Chianella, and S. A. Piletsky, Anal. Bioanal. Chem., 2012, 402(5), 1827-1846.  https://doi.org/10.1007/s00216-011-5405-5
  11. S. A. Piletsky, S. Alcock, and A. P. F. Turner, Trends Biotechnol., 2001, 19(1), 9-12.  https://doi.org/10.1016/S0167-7799(00)01523-7
  12. L. Ye and K. Haupt, Anal. Bioanal. Chem., 2004, 378(8),1887-1897.  https://doi.org/10.1007/s00216-003-2450-8
  13. B. T. S. Bui and K. Haupt, Anal. Bioanal. Chem., 2010, 398(6), 2481-2492.  https://doi.org/10.1007/s00216-010-4158-x
  14. L. Ye and K. Mosbach, Chem. Mater., 2008, 20(3), 859- 868.  https://doi.org/10.1021/cm703190w
  15. J. C. C. Yu and E. P. C. Lai, Toxins, 2010, 2(6), 1536- 1553.  https://doi.org/10.3390/toxins2061536
  16. S. Roshan, A. Mujahid, A. Afzal, I. Nisar, M. N. Ahmad, T. Hussain, and S. Z. Bajwa, Adv. Polymer Technol., 2019, 9432412. 
  17. M. A. Morales and J. M. Halpern, Bioconjugate Chem., 2019, 29(10), 3231-3239.  https://doi.org/10.1021/acs.bioconjchem.8b00592
  18. S. Yang, Y. Wang, Y. Jiang, S. Li, and W. Liu, Polymers, 2016, 8(6), 216. 
  19. Y. A. Olcer, M. Demirkurt, M. M. Demir, and A. E. Eroglu, RSC Adv., 2017, 7, 31441-31447.  https://doi.org/10.1039/C7RA05254E
  20. L.-X. Yi, R. Fang, and G.-H. Chen, J. Chromatogr. Sci., 2013, 51(7), 608-618.  https://doi.org/10.1093/chromsci/bmt024
  21. P. S. Sharma, A. Wojnarowicz, W. Kutner, and F. D'Souza, Molecularly Imprinted Catalysts, 2016, 183-210. 
  22. B. Feier, A. Blidar, A. Pusta, P. Carciuc, and C. Cristea, Biosensors, 2019, 9(1), 31. 
  23. A. Sarafraz-Yazdi and N. Razavi, TrAC - Trends Anal. Chem., 2015, 73, 81-90.  https://doi.org/10.1016/j.trac.2015.05.004
  24. O. Parkash, C. Y. Yean, and R. H. Shueb, Diagnostics, 2014, 4(4), 165-180.  https://doi.org/10.3390/diagnostics4040165
  25. F.-D. Munteanu, A. M. Titoiu, J. L. Marty, and A. Vasilescu, Sensors, 2018, 18(3), 901. 
  26. M. Peeters, Austin J. Bios. Bioelectron., 2015, 1(3), 1011. 
  27. R. D. Crapnell, A. Hudson, C. W. Foster, K. Eersels, B. van Grinsven, T. J. Cleij, C. E. Banks, and M. Peeters, Sensors, 2019, 19(5), 1204. 
  28. G. Erturk and B. Mattiasson, Sensors, 2017, 17(2), 288. 
  29. M. I. Malik, H. Shaikh, G. Mustafa, and M. I. Bhanger, Sep. Purif. Rev., 2019, 48(3), 179-219.  https://doi.org/10.1080/15422119.2018.1457541
  30. S. Li, Q. Luo, Y. Liu, Z. Zhang, G. Shen, H. Wu, A. Chem, X. Liu, and A. Zhang, Polymers, 2017, 9(8), 359. 
  31. O. Jamieson, T. C. C. Soares, B. A. de Faria, A. Hudson, F. Mecozzi, S. J. Rowley-Neale, C. E. Banks, J. Gruber, K. Novakovic, M. Peeters, and R. D. Crapnell, Chemosensors, 2020, 8(1), 5. 
  32. Y. Aghoutane, A. Diouf, L. Osterlund, B. Bouchikhi, and N. E. Bari, Bioelectrochemistry, 2019, 132, 107404. 
  33. D. Capoferri, R. Alvarez-diduk, M. del Carlo, D. Compagnone, and A. Merkoci, Anal. Chem., 2018, 90(9), 5850-5856.  https://doi.org/10.1021/acs.analchem.8b00389
  34. C. Zhang, F. Zhao, Y. She, S. Hong, X. Cao, L. Zheng, S. Wang, T. Li, M. Wang, M. Jin, F. Jin, H. Shao, and J. Wang, Sens. Actuators B Chem., 2018, 284, 13-22.  https://doi.org/10.1016/j.snb.2018.12.075
  35. A. Zamora-Galvez, A. Ait-Lahcen, L. A. Mercante, E. Morales-Narvaez, A. Amine, and A. Merkoci, Anal. Chem., 2016, 88(7), 3578-3584.  https://doi.org/10.1021/acs.analchem.5b04092
  36. L. Devkota, L. T. Nguyen, T. Thi, and B. Piro, Electrochim. Acta, 2018, 270, 535-542.  https://doi.org/10.1016/j.electacta.2018.03.104
  37. A. G. Ayankojo, J. Reut, V. Ciocan, A. Opik, and V. Syritski, Talanta, 2019, 209, 120502. 
  38. S. C. R. Rebelo, R. Costa, A. T. S. C. Brand, A. F. Silva, M. G. F. Sales, and C. M. Pereira, Anal. Chim. Acta, 2019, 1082, 126-135.  https://doi.org/10.1016/j.aca.2019.07.050
  39. D. Kumar and B. B. Prasad, Sens. Actuators B Chem., 2012, 171-172, 1141-1150. 
  40. K. Phonklam, R. Wannapob, W. Sriwimol, P. Thavarungkul, and T. Phairatana, Sens. Actuators B Chem., 2019, 308, 127630. 
  41. B. V. M. Silva, B. A. G. Rodriguez, G. F. Sales, M. D. P. T. Sotomayor, and R. F. Dutra, Biosens. Bioelectron., 2016, 77, 978-985.  https://doi.org/10.1016/j.bios.2015.10.068
  42. A. R. Cardoso, M. H. de Sa, and M. G. F. Sales, Bioelectrochemistry, 2019, 130, 107287. 
  43. A. Motaharian, M. R. M. Hosseini, and K. Naseri, Sens. Actuators B Chem., 2019, 288, 356-362.  https://doi.org/10.1016/j.snb.2019.03.007
  44. K. Fu, R. Zhang, J. He, H. Bai, and G. Zhang, Biosens. Bioelectron., 2019, 143, 111636. 
  45. F. Lopes, J. G. Pacheco, P. Rebelo, and C. Deleruematos, Sens. Actuators B Chem., 2017, 243, 745-752.  https://doi.org/10.1016/j.snb.2016.12.031
  46. M. Roushani, Z. Jalilian, and A. Nezhadali, Colloids Surf. B Biointerfaces, 2018, 172, 594-600.  https://doi.org/10.1016/j.colsurfb.2018.09.015
  47. V. M. Serrano, A. R. Cardoso, M. Diniz, and M. G. F. Sales, Sens. Actuators B Chem., 2020, 311, 127902. 
  48. M. Amatatongchai, J. Sitanurak, W. Sroysee, S. Sodanat, S. Chairam, P. Jarujamrus, D. Nacapricha, and P. A. Lieberzeit, Anal. Chim. Acta, 2019, 1077, 255-265.  https://doi.org/10.1016/j.aca.2019.05.047
  49. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, J. Chem. Educ., 2018, 95(2), 197-206.  https://doi.org/10.1021/acs.jchemed.7b00361
  50. M. G. Barron and K. B. Woodburn, Ecotoxicology of chlorpyrifos, in G. W. Ware (ed.), Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, 1995, 144. 
  51. M. L. Yola and N. Atar, J. Electrochem. Soc., 2017, 164(6), B223-B229.  https://doi.org/10.1149/2.1411706jes
  52. J. Shi and D. Marshall, Surface Modification Approaches for Electrochemical Biosensors, in P. A. Serra (ed.), Biosensors - Emerging Materials and Applications, InTech, London, 2011. 
  53. S. Nagabooshanam, S. Roy, A. Mathur, I. Mukherjee, S. Krishnamurthy, and L. M. Bharadwaj, Sci. Rep., 2019, 9, 19862. 
  54. A. Kumaravel and M. Chandrasekaran, J. Agric. Food Chem., 2015, 63(27), 6150-6156.  https://doi.org/10.1021/acs.jafc.5b02057
  55. L. G. Zamfir, L. Rotariu, and C. Bala, Biosens. Bioelectron., 2011, 26(8), 3692-3695.  https://doi.org/10.1016/j.bios.2011.02.001
  56. Sivanesan A. and Abraham J. S., Ind. Biotechnol., 2009, 9(1), 31-36. 
  57. Y. P. Li, R. X. Zhao, G. Y. Han, and Y. M. Xiao, Electroanalysis, 2018, 30(10), 2258-2264.  https://doi.org/10.1002/elan.201800204
  58. R. Khaksarinejad, A. Mohsenifar, T. Rahmani-Cherati, R. Karami, and M. Tabatabaei, Appl. Biochem. Biotechnol., 2015, 176, 359-371.  https://doi.org/10.1007/s12010-015-1579-1
  59. F. Arduini, D. Neagu, V. Scognamiglio, S. Patarino, D. Moscone, and G. Palleschi, Chemosensors, 2015, 3(2), 129-145.  https://doi.org/10.3390/chemosensors3020129
  60. C. Zhang, F. Zhao, Y. He, Y. She, S. Hong, J. Ma, M. Wang, Z. Cao, T. Li, A. M. A. Ei-Aty, J. Ping, Y. Ying, and J. Wang, Microchim. Acta, 2019, 186(8), 504. 
  61. J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, and T.-L. Ren, Sens. Actuators B Chem., 2018, 262, 125-136.  https://doi.org/10.1016/j.snb.2018.01.164
  62. S. K. Bhardwaj, R. Chauhan, P. Yadav, S. Ghosh, A. K. Mahapatro, J. Singh, and T. Basu, Biomater Sci., 2019, 7, 1598-1606.  https://doi.org/10.1039/C8BM01406J
  63. Z. Cui, Y. Sun, N. Ge, J. Zhang, Y. Liu, A. Li, and Y. Cao, Se Pu, 2014, 32(8), 855-860. 
  64. Y. N. Ma, W. J. Gui, and G. N. Zhu, Anal. Methods, 2015, 7, 2108-2113. 
  65. Y. Y. Zou and A. Schreiber, Quantitation and Identification of Organotin Compounds in Food, Water, and Textiles Using LC-MS/MS, AB Sciex, Concord, Canada, 2012, 6690212-01. 
  66. D. Du, X. Ye, J. Cai, J. Liu, and A. Zhang, Biosens. Bioelectron., 2010, 25(11), 2503-2508.  https://doi.org/10.1016/j.bios.2010.04.018
  67. S. Ebrahim, R. El-Raey, A. Hefnawy, H. Ibrahim, M. Soliman, and T. M. Abdel-Fattah, Synth. Met., 2014, 190, 13-19.  https://doi.org/10.1016/j.synthmet.2014.01.021
  68. R. Bala, M. Kumar, K. Bansal, R. K. Sharma, and N. Wangoo, Biosens. Bioelectron., 2016, 85, 445-449.  https://doi.org/10.1016/j.bios.2016.05.042
  69. T. Alizadeh, Thin Solid Films, 2010, 518(21), 6099-6106. 
  70. J.-L. Wang, Q. Xia, A.-P. Zhang, X.-Y. Hu, and C.-M. Lin, J. Zhejiang Univ. Sci. B, 2012, 13, 267-273.  https://doi.org/10.1631/jzus.B11a0180
  71. G. Odian, Principles of Polymerization, 4th ed., Wiley, 2004. DOI:10.1002/047147875X 
  72. W. I. B. W. Ibrahim and I. M. Mujtaba, Comput. Aided Chem. Eng., 2012, 31, 1326-1330.  https://doi.org/10.1016/B978-0-444-59506-5.50096-1
  73. D. F. Argenta, T. C. dos Santos, A. M. Campos, and T. Caon, Hydrogel Nanocomposite Systems, Nanocarriers for Drug Delivery, Elsevier, 2019, 81-131. 
  74. W.-F. Su, Radical Chain Polymerization, Principles of Polymer Design and Synthesis. Lecture Notes in Chemistry, Springer, Berlin, Heidelberg, 2013. 
  75. H. Riazi, A. A. Shamsabadi, P. Corcoran, M. C. Grady, A. M. Rappe, and M. Soroush, Processes, 2018, 6(1), 3. 
  76. H. C. Yu, X. Y. Huang, F. H. Lei, X. C. Tan, Y. C. Wei, and H. Li, Electrochim. Acta, 2014, 141, 45-50.  https://doi.org/10.1016/j.electacta.2014.07.050
  77. N. Yucel, H. Gulen, and P. C. Hatir, 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 2019, 1-4. 
  78. T. Pasang and C. Ranganathaiah, J. Phys.: Conf. Ser., 2015, 618, 012033. 
  79. H.-H. Pan, W.-C. Lee, C.-Y. Hung, and C.-C. Hwang, J. Chem., 2007, 4, 632904. 
  80. S. I. Khan, R. R. Chillawar, K. K. Tadi, and R.V. Motghare, Curr. Anal. Chem., 2018, 14(5), 474-482.  https://doi.org/10.2174/1573411013666171117163609
  81. M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco, TrAC - Trends Anal. Chem., 2004, 23(1), 36-48.  https://doi.org/10.1016/S0165-9936(04)00102-5
  82. M. A. Beluomini, J. L. da Silva, A. C. de Sa, E. Buffon, T. C. Pereira, and N. R. Stradiotto, J Electroanal. Chem., 2019, 840, 343-366.  https://doi.org/10.1016/j.jelechem.2019.04.005
  83. E. Pratiwi, A. Mulyasuryani, and A. Sabarudin, J. Pure Appl. Chem. Res., 2018, 7(1), 12-18.  https://doi.org/10.21776/ub.jpacr.2018.007.01.364
  84. M. Babaiee, M. Pakshir, and B. Hashemi, Synth. Met., 2015, 199, 110-120.  https://doi.org/10.1016/j.synthmet.2014.11.012
  85. S. M. Sayyah, A. B. Khaliel, R. E. Azooz, and F. Mohame, Electropolymerization of Some Ortho-Substituted Phenol Derivatives on Pt-Electrode from Aqueous Acidic Solution; Kinetics, Mechanism, Electrochemical Studies and Characterization of the Polymer Obtained, Electropolymerization, IntechOpen, 2011. 
  86. V. Ganesh, S. K. Pal, S. Kumar, and V. Lakshminarayanan, Electrochim. Acta, 2006, 52(9), 194-321.  https://doi.org/10.1016/j.electacta.2006.04.058
  87. E. Mavroudakis, D. Cuccato, and D. Moscatelli, Determination of Reaction Rate Coefficients in Free-Radical Polymerization Using Density Functional Theory, Computational Quantum Chemistry, Elsevier, 2019, 47-98. 
  88. M. Guc and G. Schroeder, World J. Res. Rev., 2017, 5(6), 36-47. 
  89. Z. O. Uygun and Y. Dilgin, Sens. Actuators B Chem., 2013, 188, 78-84.  https://doi.org/10.1016/j.snb.2013.06.075
  90. B. Cui, P. Liu, X. Liu, S. Liu, and Z. Zhang, J. Mater. Res. Technol., 2020, 9(6), 12568-12584.  https://doi.org/10.1016/j.jmrt.2020.08.052
  91. B. Huang, R. Ling, Y. Cheng, J. Wen, Y. Dai, W. Huang, S. Zhang, X. Lu, Y. Luo, and Y. Jiang, Mol. Ther. - Methods Clin. Dev., 2020, 18, 367-375.  https://doi.org/10.1016/j.omtm.2020.06.013
  92. T. N. Chatterjee and R. Bandyopadhyay, Trans. Indian Natl. Acad. Eng., 2020, 5(2), 225-228.  https://doi.org/10.1007/s41403-020-00125-7
  93. F. Ning, T. Qiu, Q. Wang, H. Peng, Y. Li, X. Wu, Z. Zhang, L. Chem, and H. Xiong, Food Chem., 2017, 221, 1797-1804.  https://doi.org/10.1016/j.foodchem.2016.10.101
  94. X. Sun, J. Wang, Y. Li, J. Yang, J. Jin, S. M. Shah, and J. Chen, J. Chromatogr. A, 2014, 1359, 1-7.  https://doi.org/10.1016/j.chroma.2014.07.007
  95. X. Li and K. H. Row, J. Chromatogr. B, 2017, 1068-1069, 56-63.  https://doi.org/10.1016/j.jchromb.2017.10.012
  96. X. Zhu, Y. Zeng, Z. Zhang, Y. Yang, Y. Zhai, H. Wang, L. Liu, J. Hu, and L. Li, Biosens. Bioelectron., 2018, 108, 38-45.  https://doi.org/10.1016/j.bios.2018.02.032
  97. L. M. Madikizela, S. Ncube, and L. Chimuka, Compr. Anal. Chem., 2019, 86, 337-364.  https://doi.org/10.1016/bs.coac.2019.05.007
  98. V. M. Ekomo, C. Branger, R. Bikanga, A. Florea, G. Istamboulie, C. Calas-Blanchard, T. Noguer, A. Sarbu, and H. Brisset, Biosens. Bioelectron., 2018, 112, 156-161.  https://doi.org/10.1016/j.bios.2018.04.022
  99. M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, and G. Liu, Front Chem., 2020, 8, 1-20.  https://doi.org/10.3389/fchem.2020.00001
  100. J. W. Lowdon, H. Dilien, P. Singla, M. Peeters, T. J. Cleiji, B. van Grinsven, and K. Eersels, Sens. Actuators B Chem., 2020, 325, 128973.