• Title/Summary/Keyword: Parametric excitation

Search Result 145, Processing Time 0.028 seconds

Parametric Resonance Characteristics of Laminated Composite Curved Shell Panels in a Hygrothermal Environment

  • Sahu, S.K.;Rath, M.K.;Datta, P.K.;Sahoo, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.332-348
    • /
    • 2012
  • The present study deals with the parametric resonance behaviour of laminated composite curved shell panels in a hygrothermal environment using Bolotin's approach. A simple laminated model is developed using first order shear deformation theory (FSDT) for the vibration and dynamic stability analysis of laminated composite shells subjected to hygrothermal conditions. A computer program based on the finite element method (FEM) in a MATLAB environment is developed to perform all necessary computations. Quantitative results are presented to show the effects of curvature, ply-orientations, degree of orthotropy and geometry of laminates on the parametric instability of composite curved shell panels for different temperature and moisture concentrations. The excitation frequencies of laminated composite panels decrease with the increase of temperature and moisture due to reduction of stiffness for all laminates.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

Parametric study on multichannel analysis of surface waves-based nondestructive debonding detection for steel-concrete composite structures

  • Hongbing Chen;Shiyu Gan;Yuanyuan Li;Jiajin Zeng;Xin Nie
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.89-105
    • /
    • 2024
  • Multichannel analysis of surface waves (MASW) method has exhibited broad application prospects in the nondestructive detection of interfacial debonding in steel-concrete composite structures (SCCS). However, due to the structural diversity of SCCS and the high stealthiness of interfacial debonding defects, the feasibility of MASW method needs to be investigated in depth. In this study, synthetic parametric study on MASW nondestructive debonding detection for SCCSs is performed. The aim is to quantitatively analyze influential factors with respect to structural composition of SCCS and MASW measurement mode. First, stress wave composition and propagation process in SCCS are studied utilizing 2D numerical simulation. For structural composition in SCCS, the thickness variation of steel plate, concrete core, and debonding defects are discussed. To determine the most appropriate sensor arrangement for MASW measurement, the effects of spacing and number of observation points, along with distances between excitation points, nearest boundary, as well as the first observation point, are analyzed individually. The influence of signal type and frequency of transient excitation on dispersion figures from forwarding analysis is studied to determine the most suitable excitation signal. The findings from this study can provide important theoretical guidance for MASW-based interfacial debonding detection for SCCS. Furthermore, they can be instrumental in optimizing both the sensor layout design and signal choice for experimental validation.

Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation (계수려진을 받는 단순지지 보의 비선형 진동특성)

  • Son, In-Soo;Yabuno, Hiroshi;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

Vibration of Non-linear System under Random Parametric Excitations by Probabilistic Method (불규칙 매개변수 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee, Sin-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.72-79
    • /
    • 2006
  • Vibration of a non-linear system under random parametric excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were An analytical method where the square mean of error was minimized was used An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

Active Nonlinear Vibration Absorber for a Nonlinear System with a Time Delay Acceleration Feedback under the Internal Resonance, Subharmonic, Superharmonic and Principal Parametric Resonance Conditions Simultaneously

  • Mohanty, S;Dwivedy, SK
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, dynamic analysis of a nonlinear active vibration absorber is conducted with a time delay acceleration feedback to suppress the vibration of a nonlinear single degree of freedom primary system. The primary system consisting of linear and nonlinear cubic springs, mass, and damper is subjected to the multi-harmonic hard excitation with a parametric excitation. It is proposed to reduce the vibration of the primary system and the absorber by using a lead zirconate titanate (PZT) stack actuator in series with a spring in the absorber which configures as an active vibration absorber. The method of multiple scales (MMS) is used to obtain the approximate solution of the system under the internal resonance, subharmonic, superharmonic, and principal parametric resonance conditions simultaneously. Frequency and time responses of the system are investigated considering a delay in the feedback for the various parameters of the absorber configuration and controlling force.

Effect of the seismic excitation angle on the dynamic response of adjacent buildings during pounding

  • Polycarpou, Panayiotis C.;Papaloizou, Loizos;Komodromos, Petros;Charmpis, Dimos C.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1127-1146
    • /
    • 2015
  • The excitation angle or angle of incidence is the angle in which the horizontal seismic components are applied with respect to the principal structural axes during a time history analysis. In this study, numerical simulations and parametric studies are performed for the investigation of the effect of the angle of seismic incidence on the response of adjacent buildings, which may experience structural pounding during strong earthquakes due to insufficient or no separation distance between them. A specially developed software application has been used that implements a simple and efficient methodology, according to which buildings are modelled in three dimensions and potential impacts are simulated using a novel impact model that takes into account the arbitrary location of impacts and the geometry at the point of impact. Two typical multi-storey buildings and a set of earthquake records have been used in the performed analyses. The results of the conducted parametric studies reveal that it is very important to consider the arbitrary direction of the ground motion with respect to the structural axes of the simulated buildings, especially during pounding, since, in many cases, the detrimental effects of pounding become more pronounced for an excitation angle different from the commonly examined 0 or 90 degrees.

Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

Modified pendular vibration absorber for structures under base excitation

  • Pezo Eliot, Z.;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.161-172
    • /
    • 2018
  • The passive control of structures using a pendulum tuned mass damper has been extensively studied in the technical literature. As the frequency of the pendulum depends only on its length and the acceleration of gravity, to tune the frequency of the pendulum with that of the structure, the pendulum length is the only design variable. However, in many cases, the required length and the space necessary for its installation are not compatible with the design. In these cases, one can replace the classical pendulum by a virtual pendulum which consists of a mass moving over a curved surface, allowing thus for a greater flexibility in the absorber design, since the length of the pendulum becomes irrelevant and the shape of the curved surface can be optimized. A mathematical model for a building with a pendular tuned mass damper and a detailed parametric analysis is conducted to study the influence of this device on the nonlinear oscillations and stability of the main system under harmonic and seismic base excitation. In addition to the circular profiles, different curved surfaces with softening and hardening characteristics are analyzed. Also, the influence of impact on energy dissipation is considered. A detailed parametric analysis is presented showing that the proposed damper can not only reduce sharply the displacements, and consequently the internal forces in the main structure, but also the accelerations, increasing user comfort. A review of the relevant aspects is also presented.