• Title/Summary/Keyword: Parametric body

Search Result 149, Processing Time 0.024 seconds

Post Silicon Management of On-Package Variation Induced 3D Clock Skew

  • Kim, Tak-Yung;Kim, Tae-Whan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.139-149
    • /
    • 2012
  • A 3D stacked IC is made by multiple dies (possibly) with heterogeneous process technologies. Therefore, die-to-die variation in 2D chips renders on-package variation (OPV) in a 3D chip. In spite of the different variation effect in 3D chips, generally, 3D die stacking can produce high yield due to the smaller individual die area and the averaging effect of variation on data path. However, 3D clock network can experience unintended huge clock skew due to the different clock propagation routes on multiple stacked dies. In this paper, we analyze the on-package variation effect on 3D clock networks and show the necessity of a post silicon management method such as body biasing technique for the OPV induced 3D clock skew control in 3D stacked IC designs. Then, we present a parametric yield improvement method to mitigate the OPV induced 3D clock skew.

Numerical Computation of the Stress Itensity Factor of A Cracked Viscoelastic Body Under the Impact Load (충격하중을 받는 점탄성 균열의 응력확대계수 계산)

  • Lee Sung-Hee;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1583-1589
    • /
    • 2004
  • In this paper, A new finite element method for the time domain analysis of the dynamic stress intensity factor of two-dimensional viscoelastic body with a stationary central crack under the transient dynamic load is presented, which is based on the intergrodifferential equations of motion in the isotropic linear viscoelasticity and the Galerkin's method. The vlscoelastic material is assumed to be elastic in dilatation and behaves like a standard linear solid in shear. As a numerical example, the Chen's problem in viscoelastodynamic version is solved for the parametric study about the effect of viscosity and relaxation time on the dynamic stress intensity factor.

KEY TECHNIQUES IN DEVELOPMENT OF VEHICLE GLASS DROP DESIGN SYSTEM

  • Liu, B.;Jin, C.N;Hu, P.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.327-335
    • /
    • 2007
  • A new optimization scheme and some key techniques are proposed in the development of a vehicle glass drop design software system. The key issues of the design system are how to regenerate the glass surface and make the vehicle glass drop down along the glass channels. To resolve these issues, a parameterized model was created at first, in which the optimizing method and Knowledge Fusion techniques were adopted the optimized process was then written into the glass drop design system by coding with C language and UGS/Open Application Programme Interface functions etc. Therefore, the designer or engineer can simulate the process of glass dropping along the channels to assess the potential interference between glass and door accessory by using this software system. All of the testing results demonstrate the validity of the optimizing scheme, and the parametric design software effectively solves the key issues on development of the door accessory package.

Time-domain hydroelastic analysis with efficient load estimation for random waves

  • Kang, H.Y.;Kim, M.H.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-281
    • /
    • 2017
  • Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.

A Study on the Development of Integral Forging Process for Cask of Nuclear Fuel (핵연료 용기의 일체형 단조공정 개발에 관한 연구)

  • Kim, M.W.;Cho, J.R.;Kim, D.K.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.369-372
    • /
    • 2006
  • Monolithic forging of cask is required continuously. Body-base monolithic forging of cask has advantage of an economical manufacturing process and better reliability for nuclear applications. Through the finite element analysis and parametric study of design variables, those are die angle, groove length and flange thickness, the optimal dimensions of preform and die sets are determined in order to develop a suitable forging process for body-base monolithic forging. To verify the result of finite element analysis, the physical model of 1/30 scale of actual product using plasticine was carried out. The result of this experiment, deformed shapes were very similar to the finite element analysis. As a result of this work, the special piercing method was developed using blank material consisting of a flange, groove and squared part.

  • PDF

Dynamic Analysis of a Bogie Tilting Mechanism (대차 틸팅 기구의 동적 해석)

  • 구동회;김남포;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

Characterization of the Tilting Link Mechanism for the Tilting Train (틸팅차량용 틸팅 링크메커니즘의 특성연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • This study presents parametric studies for design of a tilting mechanism to be used in 180km/h tilting train. The tilling mechanism is composed of 4 links, a lilting bolster old an electro-mechanical actuator. The movements of the tiling center, CG of the train body, coupler center and tilting actuator along variation of upper and lower span length have been verified by the kinematic analysis. Moreover, the inclination angle and the stroke of the tilting actuator according to the variation of the tilting angle from +8 degrees to -8 degrees have been investigated. From this study, the relation between the movements of the CG of the train body, coupler center and tilting actuator and the height of the tilting center could be evaluated.

Functional Underwear Development for Elderly Woman from 3D Body Model applying PCM treatment (PCM 가공과 3차원 인체 모델링 기술을 적용한 노년 여성용 기능성 언더웨어 설계)

  • Choi, Sin-Ae;Kim, Tae-gyou;Park, Youong-Min;Shin, Ji-Young;Park, Soonjee
    • The Korean Fashion and Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.457-467
    • /
    • 2016
  • This study aimed to develop functional underwear for elderly women in their sixties in terms of good fit, wear comfort and body temperature regulation. To satisfy elderly women's physical and metabolical needs, an automatic temperature control system via PCM treatment was applied. Underwear pattern was produced by producing body surface replica, which was derived from 3D body parametric model. Differential ratios of outline length and area between 3D surface and 2D plane were 1.4% and 0.5%, respectively. The reduction rate was determined as 10% through the expert's evaluation. PCM treated fabric showed higher Q-max, meaning that it can facilitate the thermal transition in hot situation. Moreover, it also showed higher insulation to preserve heat and keep warm microclimate in a cold weather. Heat distribution measurements on various body parts revealed that the temperature after PCM treatment was significantly higher. The clothing pressure after 10% pattern reduction showed higher before reduction, at the same time, even lower than the comfort clothing pressure range of $5{\sim}10gf/cm^2$, implying that experimental garment of this research is acceptable in terms of clothing pressure. Evaluation results on the comfort to move in various motions proved that adequate clothing pressure improved the wear comfort in various motions.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators (인조 꼬리지느러미가 압전작동기 구동형 생체모사 물고기 로봇의 성능에 미치는 영향)

  • Heo, Seok;Park, Hoon-Cheol;Tedy, Wiguna;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.429-434
    • /
    • 2007
  • This paper presents an experimental and parametric study of a biomimetic fish robot actuated by the Lightweight Piezo-composite Actuator(LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF(Body and Caudal fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, area, and aspect ratio. It was found that a high aspect ratio caudal fin contributes to high swimming speed. The fish robot was propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for 300 Vpp input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot was examined by Strouhal number, Froude number, Reynolds number, and Net forward force.

  • PDF