• 제목/요약/키워드: Parametric Surface

검색결과 512건 처리시간 0.029초

Vertical response spectra for an impact on ground surface

  • Constantopoulos, Ioannis V.;Van Wessem, Yukiko;Verbrugge, Jean-Claude
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.435-455
    • /
    • 2012
  • An impact on the ground surface may represent several phenomena, such as a crash of an airplane or an explosion or the passage of a train. In order to analyze and design structures and equipment to resist such a type of shocks, the response spectra for an impact on the ground must be given. We investigated the half-space motions due to impact using the finite element method. We performed extensive parametric analyses to define a suitable finite element model and arrive at displacement time histories and response spectra at varying distances from the impact point. The principal scope of our study has been to derive response spectra which: (a) provide insight and illustrate in detail the half-space response to an impact load, (b) can be readily used for the analysis of structures resting on a ground subjected to an impact and (c) are a new family of results for the impact problem and can serve as reference for future research.

An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression

  • Khedmati, Mohammad Reza;Nouri, Zorareh Hadj Mohammad Esmaeil;Roshanali, Mohammad Mahdi
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.183-205
    • /
    • 2011
  • This paper presents the results of an investigation into the post-buckling behaviour and ultimate strength of imperfect corroded steel plates used in ship and other marine-related structures. A series of elastic-plastic large deflection finite element analyses is performed on randomly corroded steel plates. The effects of general corrosion on both sides of the plates are introduced into the finite element models using a random thickness surface model. The effects on plate compressive strength as a result of parametric variation of the corroded surface geometry are evaluated. A proposal on the effective thickness is concluded in order to estimate the ultimate strength and explore the post-buckling behaviour of randomly corroded steel plates under uniaxial compression.

Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

  • Ouyang, Huei-Tau;Chen, Kue-Hong;Tsai, Chi-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.951-963
    • /
    • 2015
  • The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Steady Laminar Free Convection Heat Transfer from a Sphere with Uniform Surface Heat Flux (표면의 열속이 일정한 구로 부터의 정상층류 자연대류 열전달)

  • Son Byung Jin;Lee Kwan Soo;Choi Hyung Chul;Lee Wan Ik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 1982
  • In this paper, a study is made of the steady laminar free convection boundary-layer equations on a sphere with uniform surface heat flux. To solve the boundary-layer equations, well-known Pohlhausen's simiarity solution for vertical plates is adopted just the same for spherical bodies by introducing twonondimensional parametric functions, so called azimuth functions. To determine the values of the azimuth functions which are expressed in series at the two points (the upper stagnation point and the equator), trial and error method is required. It is concluded that the heat transfer results are in good agreement with obtained from perturbation method and Von Karman-Pohlhausen method within the steady laminar free convection region for Pr=0.70.

  • PDF

Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys (알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향)

  • Min, K.H.;Seo, J.M.;Koo, H.S.;Vishara, R.J.;Tak, S.H.;Lee, I.C.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • 제16권7호
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제25권6호
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

Evaluation on the Effect of the Size of Placing Block(L/H) and Elastic Modulus of Base Structure on the Thermal Stress in Mass Concrete (매스콘크리트에서 타설블럭의 크기(L/H)와 구속체의 탄성계수가 온도응력에 미치는 영향에 관한 검토)

  • 강석화;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.275-279
    • /
    • 1996
  • In this study, the effect of external restraint on the thermal stresses and thermal cracking mode in mass concrete are analysed using the two major factors affecting external restraint such as the ratio of width go height of the placed structure (L/H) and the elastic modulus of base structure (E). For this parametric study, many cases with different values of L/H and Er are analysed by the FEM program and the co-relationship of the those major factors is examined. To evaluate the effect of external restraint on the thermal behavior of placing structure, internal restraint stress caused by temperature difference is subtracted from total thermal stress. In the case of small value of L/H or Er, it shows as internally restricted mode indicating maximum tensile stress in surface at early age, and the external restraint makes the possibility of thermal cracking higher. However, in the case of the large values of L/H and Er, the crack index at center is smaller than at surface due to the effect of external restraint. Thus, the initial location of the thermal crack is shifted from the surface to the center and the resulting crack is formed at later age.

  • PDF