• 제목/요약/키워드: Parametric Study

검색결과 3,721건 처리시간 0.03초

고출력 SOEC 시스템의 매개변수 연구 (Parametric Study on High Power SOEC System)

  • 뚜안앵;김영상;잡반티엔;이동근;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Nonlinear finite element based parametric and stochastic analysis of prestressed concrete haunched beams

  • Ozogul, Ismail;Gulsan, Mehmet E.
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.207-224
    • /
    • 2022
  • The mechanical behavior of prestressed concrete haunched beams (PSHBs) was investigated in depth using a finite element modeling technique in this study. The efficiency of finite element modeling was investigated in the first stage by taking into account a previous study from the literature. The first stage's findings suggested that finite element modeling might be preferable for modeling PSHBs. In the second stage of the research, a comprehensive parametric study was carried out to determine the effect of each parameter on PSHB load capacity, including haunch angle, prestress level, compressive strength, tensile reinforcement ratio, and shear span to depth ratio. PSHBs and prestressed concrete rectangular beams (PSRBs) were also compared in terms of capacity. Stochastic analysis was used in the third stage to define the uncertainty in PSHB capacity by taking into account uncertainty in geometric and material parameters. Standard deviation, coefficient of variation, and the most appropriate probability density function (PDF) were proposed as a result of the analysis to define the randomness of capacity of PSHBs. In the study's final section, a new equation was proposed for using symbolic regression to predict the load capacity of PSHBs and PSRBs. The equation's statistical results show that it can be used to calculate the capacity of PSHBs and PSRBs.

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구 (Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine)

  • 마상범;김성;최영석;차동안;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

비선형 파라메트릭 사영필터에 의한 트러스 구조물의 손상 검출 (Damage Detection of Truss Structures Using Nonlinear Parametric Projection Filter)

  • 문효준;서일교
    • 한국공간구조학회논문집
    • /
    • 제4권2호
    • /
    • pp.73-80
    • /
    • 2004
  • 본 논문에서는 비선형 파라메트릭 사영필터를 이용한 2차원 트러스 구조물의 손상 검출에 대한 연구를 제시한다. 역문제의 해석은 최근 많은 관심을 끌고 있으며, 역문제 해석법으로서 필터이론을 사용한 접근법이 많은 관심을 받고 있다. 특히 칼만 필터는 신호 통신, 시스템 제어 등의 많은 분야에서 적용되어 왔으며 그 유효성이 입증되었다. 본 논문에서는 비선형 파라메트릭 사영필터를 2차원 트러스 구조물의 손상추정에 적용하고 손상된 구조물의 고유 진동수과 고유 모드를 관측 데이터로 채택하여 손상부재의 위치와 손상정도를 추정한다. 마지막으로 수치해석 예를 통하여 제안된 해석법의 유효성을 밝힌다.

  • PDF

Modeling of Breast Cancer Prognostic Factors Using a Parametric Log-Logistic Model in Fars Province, Southern Iran

  • Zare, Najaf;Doostfatemeh, Marzieh;Rezaianzadeh, Abass
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1533-1537
    • /
    • 2012
  • In general, breast cancer is the most common malignancy among women in developed as well as some developing countries, often being the second leading cause of cancer mortality after lung cancer. Using a parametric log-logistic model to consider the effects of prognostic factors, the present study focused on the 5-year survival of women with the diagnosis of breast cancer in Southern Iran. A total of 1,148 women who were diagnosed with primary invasive breast cancer from January 2001 to January 2005 were included and divided into three prognosis groups: poor, medium, and good. The survival times as well as the hazard rates of the three different groups were compared. The log-logistic model was employed as the best parametric model which could explain survival times. The hazard rates of the poor and the medium prognosis groups were respectively 13 and 3 times greater than in the good prognosis group. Also, the difference between the overall survival rates of the poor and the medium prognosis groups was highly significant in comparison to the good prognosis group. Use of the parametric log-logistic model - also a proportional odds model - allowed assessment of the natural process of the disease based on hazard and identification of trends.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

활성대조군을 이용한 두 군 설계와 위약군을 포함한 세 군 설계의 비열등성 시험 (Non-Inferiority Test in a Two-Arm Trial and a Three-Arm Trial Including a Placebo)

  • 이지선;김동재
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.947-957
    • /
    • 2008
  • 비열등성 시험시에 치료군(treatment group)과 활성대조군(active control group)을 이용한 모형으로 Hauschke 등 (1999)이 제안한 모수적 검정법이 있다. 이 방법은 위약군(placebo group)과 직접적인 비교가 불가능하므로 Pigeot 등 (2003)이 세 군으로 확장한 검정법을 제안하였다. 그러나 이와 같은 두 검정법은 구체적인 분포가정이 필요하다. 이런 단점을 보완하기 위하여 본 논문에서는 비모수적 방법으로서 두 군 설계에 Wilcoxon 순위합 검정(Wilcoxon, 1945)을 이용한 방법을, 세 군 설계에 Scheirer 등 (1976)이 제안한 선형대비검정을 확장한 새로운 방법을 제안한다. 또한 모의실험을 통하여 모수적 방법과 비모수적 방법간의 검정력을 비교하였다.

매개 가진되는 얇은 외팔보의 비선형 진동 안정성 (Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation)

  • 방동준;이계동;조한동;정태건
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.