Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.470

Parametric Study on High Power SOEC System  

BUI, TUANANH (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
KIM, YOUNG SANG (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
GIAP, VAN-TIEN (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
LEE, DONG KEUN (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
AHN, KOOK YOUNG (Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 470-476 More about this Journal
Abstract
In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.
Keywords
Solid oxide electrolysis cell; Parametric study; Faraday efficiency; Steam conversion rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-economic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.   DOI
2 Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, and J. Zhang, "A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology", Chemical Society Reviews, Vol. 46, No. 5, 2017, pp. 1427-1463.   DOI
3 Q. P. Fang, L. Blum, R. Peters, M. Peksen, P. Batfalsky, and D. Stolten, "SOFC stack performance under high fuel utilization", International Journal of Hydrogen Energy, Vol. 40, No. 2, 2015, pp. 1128-1136, doi: https://doi.org/10.1016/j.ijhydene.2014.11.094.   DOI
4 R. Elder, D. Cumming, and M. B. Mogensen, "Chapter 11-high temperature electrolysis", Carbon Dioxide Utilisation, 2015, pp. 183-209, doi: https://doi.org/10.1016/B978-0-444-62746-9.00011-6.   DOI
5 M. B. Mogensen, M. Chen, H. L. Frandsen, C. Graves, J. B. Hansen, K. V. Hansen, A. Hauch, T. Jacobsen, S. H. Jensen, T. L. Skafte, and X. Sun, "Reversible solid-oxide cells for clean and sustainable energy", Clean Energy, Vol. 3, No. 3, 2019, pp. 175-201, doi: https://doi.org/10.1093/ce/zkz023.   DOI
6 HELMETH, "High temperature electrolysis cell (SOEC)". Retrieved from http://www.helmeth.eu/index.php/technologies/high-temperature-electrolysis-cell-soec.
7 V. Saarinen, J. Pennanen, M. Kotisaari, O. Thomann, O. Himanen, S. Di Iorio, P. Hanoux, J. Aicart, K. Couturier, X. Sun, M. Chen, and B. R. Sudireddy, "Design, manufacturing, and operation of movable 2 × 10 kW size rSOC system", Fuel Cells, Vol. 21, No. 5, 2021, pp. 477-487, doi: https://doi.org/10.1002/fuce.202100021.   DOI
8 G. Schiller, M. Lang, N. Monnerie, H. v. Storch, J. Reinhold, and P. Sundarraj, "Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production", Journal of Power Sources, Vol. 416, 2019, pp. 72-78, doi: https://doi.org/10.1016/j.jpowsour.2019.01.059.   DOI
9 Y. S. Kim, Y. D. Lee, K. Y. Ahn, D. K. Lee, S. M. Lee, and E. J. Choi, "Operation characteristics according to steam temperature and effectivenss of external steam-related SOEC system", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020. pp. 596-604, doi: https://doi.org/10.7316/KHNES.2020.31.6.596.   DOI
10 F. O. Ayodele, S. I. Mustapa, B. V. Ayodele, and N. Mohammad, "An overview of economic analysis and environmental impacts of natural gas conversion technologies", Sustainability, Vol. 12, No. 23, 2020, pp. 10148, doi: https://doi.org/10.3390/su122310148.   DOI
11 D. Peterson, D. A. DeSantis, and M. Hamdan, "DOE hydrogen and fuel cells program record 20004: cost of electrolytic hydrogen production with existing technology", 2020.
12 D. Peterson, E. L. Miller, A. Brisse, J. Hartvigsen, R. J. Petri, G. G. Tao, and S. Satyapal, "DOE Hydrogen and fuel cells program record 16014: hydrogen production cost from solid oxide electrolysis", Hydrogen, 2016. Retrieved from https://www.hydrogen.energy.gov/pdfs/16014_h2_production_cost_solid_oxide_electrolysis.pdf.
13 J. Schefold, A. Brisse, and H. Poepke, "23,000 h steam electrolysis with an electrolyte supported solid oxide cell", International Journal of Hydrogen Energy, Vol. 42. No. 19, 2017, pp. 13415-13426, doi: https://doi.org/10.1016/j.ijhydene.2017.01.072.   DOI
14 J. Schefold, A. Brisse, A. Surrey, and C. Walter, "80,000 current on/off cycles in a one year long steam electrolysis test with a solid oxide cell", International Journal of Hydrogen Energy, Vol. 45, No. 8, 2020, pp. 5143-5154, doi: https://doi.org/10.1016/j.ijhydene.2019.05.124.   DOI
15 EBSILOW, "Technologies, S.E.S.-S". Retrieved from: https://www.ebsilon.com/en/.