• Title/Summary/Keyword: Parametric Study

Search Result 3,701, Processing Time 0.028 seconds

Case Analysis and Applicability Review of Parametric Design in Landscape Architectural Design (조경 설계 분야에서 파라메트릭 디자인의 사례 분석과 활용 가능성)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.1-16
    • /
    • 2021
  • The act of design in landscape architecture consists of a concept within a designer's mind, technical representations, and finally, a process of construction. In the 4th Industrial Revolution, the design process is facing many changes due to the rapid development of computer technology and the IT ecosystem. Computer technology was initially developed for simple functions, such as mathematical calculation and graphic representation. However, after the spread of Personal Computers, starting with IBM and Macintosh, programming languages and hardware rapidly developed, algorithms and applications became specialized, and the purpose of using computers became very diverse. This study diagnoses issues concerning the functions and roles that new design methods, such as computational design, parametric design, and algorithmic design, can play in landscape architecture based on changes in the digital society. The study focused on the design methodology using parametric technology, which has recently received the most attention. First, the basis for discussion was developed by examining the main concepts and characteristics of parametric design in modern landscape architecture. Prior research on the use of parametric design in landscape architecture was analyzed, as were the case studies conducted by landscape design firms. As a result, it was confirmed that parametric design has not been sufficiently discussed in terms of the number and diversity of studies compared to other techniques investigated by landscape design firms. Finally, based on the discussion, the study examined specific cases and future possibilities of the parametric design in landscape architecture.

The Study of Numerical Analysis on Failure Behavior of Reinforced Soil Wall (보강토 옹벽의 파괴거동에 대한 수치해석적 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2008
  • This paper is concerned with the numerical evaluation of the failure behavior of reinforced soil walls based on the elasto-plastic theory. At first, the basic analysis on the failure behavior of reinforced soil walls are discussed. Parametric study of the major factors influencing the failure behavior is conducted by FEM. The objectives are to identify and evaluate the major facts influencing the failure mode of reinforced soil walls. The results of the parametric study on the failure behavior due to soil friction angle, reinforcement type, and reinforecement length are analysed.

  • PDF

Numerical Parametric Study of Offshore K-Joint Structure (해양 K-Joint 구조의 수치해석 연구)

  • Park Kwan-Kyu;Im Sung-Woo;Jo Chul-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.603-611
    • /
    • 2006
  • The fundamental joint configuration that is often applied in offshore structures is the K-joint. The paper describes a numerical parametric study for K-joint parameters (using the finite element program) and compared with results of the experimental test. The stress effects of various parameters including $\alpha,\;\beta,\;\gamma,\;\tau\;and\;\theta$ were investigated. The paper introduces the stress distributions as per each parameter. From the study, the maximum stress of joint became different according to the variation of joint parameters.

  • PDF

Behavior of concrete-filled double skin steel tube beam-columns

  • Hassan, Maha M.;Mahmoud, Ahmed A.;Serror, Mohammed H.
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1141-1162
    • /
    • 2016
  • Concrete-filled double skin steel tube (CFDST) beam-columns are widely used in industrial plants, subways, high-rise buildings and arch bridges. The CFDST columns have the same advantages as traditional CFT members. Moreover, they have lighter weight, higher bending stiffness, better cyclic performance, and have higher fire resistance capacities than their CFT counterparts. The scope of this study is to develop finite element models that can predict accepted capacities of double skin concrete-filled tube columns under the combined effect of axial and bending actions. The analysis results were studied to determine the distribution of stresses among the different components and the effect of the concrete core on the outer and inner steel tube. The developed models are first verified against the available experimental data. Accordingly, an extensive parametric study was performed considering different key factors including load eccentricity, slenderness ratio, concrete compressive strength, and steel tube yield strength. The results of the performed parametric study are intended to supplement the experimental research and examine the accuracy of the available design formulas.

Study on Volterra System for Variation of Metacentric Height in Waves and its Application to Analysis of Parametric Roll (볼테라 시스템을 이용한 파랑 중 파라메트릭 횡동요에 대한 연구)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.227-241
    • /
    • 2017
  • In this study, a Volterra system for the variations of metacentric height (GM) in waves is employed to simulate the parametric roll phenomena of ships in head sea condition. Using the present Volterra system, the transfer function of each harmonic component in the GM variation is computed for different ship models, including mathematical models and a real containership, and the results are validated through the comparison with the values obtained using the direct calculations based on a weakly nonlinear time-domain method. Then, a semi-analytic approach employing a 1-degree of freedom equation for roll motion is developed to simulate the parametric roll motions in irregular waves. In the derived approach, the nonlinear and time-varying restoring forces in the waves are approximated using the Volterra system. Through simulations of the parametric roll for different sea states, the effects of the 1st and 2nd-order harmonic components of the variations in the occurrence and amplitude of the parametric roll motions are investigated. Because of the strong nonlinearities in the phenomena, a stochastic analysis is conducted to examine the statistical properties of the roll motions in consideration of the sensitivities and uncertainties in the computations.

Dealing with the Willingness-to-Pay Data with Preference Intensity : A Semi-parametric Approach (선호강도를 반영한 지불의사액 자료의 준모수적 분석)

  • Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.447-474
    • /
    • 2005
  • Respondents, in the willingness to pay (WTP) survey, may have preference intensity about their stated WTP values. This study elicited a post-decisional intensity measure for each observed WTP answer for gathering information on the degree of preference intensity. In order to deal with the WTP data with preference intensity, this paper considers using the Type 3 Tobit model. This is usually estimated by the parametric two-stage estimation method assuming homoskedastic and bivariate normal error structure. However, if the assumptions are not satisfied, the estimates are inconsistent. The author has tested the hypotheses of homoskedasticity and normality, and could not accept them at the 1% level. The assumptions required to estimate the parametric Type 3 model are, therefore, too strong to be satisfied. As an alternative the parametric model, this study applies a semiparametric Type 3 Tobit model. The results show that the semiparametric model significantly outperforms the parametric model, and that more importantly, the mean WTP from the parametric model is significantly different from that from the semiparametric model.

  • PDF

A study comparison of mortality projection using parametric and non-parametric model (모수와 비모수 모형을 활용한 사망률 예측 비교 연구)

  • Kim, Soon-Young;Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.701-717
    • /
    • 2017
  • The interest of Korean society and government on future demographic structures is increasing due to rapid aging. Korea's mortality rate is decreasing, but the declined gap is variable. In this study, we compare the Lee-Carter, Lee-Miller, Booth-Maindonald-Smith model and functional data model (FDM) as well as Coherent FDM using non-parametric smoothing technique. We are then examine a reasonable model for projecting on mortality declined rate trend in terms of accuracy of mortality rate by ages and life expectancy. The possibility of using non-parametric techniques for the prediction of mortality in Korea was also examined. Based on the analysis results, FDM and Coherent FDM, which uses the non-parametric technique and reflects the trend of recent data, are excellent. As a result, FDM and Coherent FDM are good fit, and predictability is also excellent assuming no significant future changes.

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

Parametric Design Considerations for Lifting Lug Structure on Ship Block (선박블록 탑재용 러그구조의 파라메트릭 설계 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.